| 1. |
Feng Y, Feng X, Lv Y. Worldwide burden of retinoblastoma from 1990 to 2021[J]. Ophthalmic Res, 2024, 67(1): 672-682. DOI: 10.1159/000542193.
|
| 2. |
Zhao J, Li S, Shi J, et al. Clinical presentation and group classification of newly diagnosed intraocular retinoblastoma in China[J]. Br J Ophthalmol, 2011, 95(10): 1372-1375. DOI: 10.1136/bjo.2010.191130.
|
| 3. |
柴勇, 毛甜. 視網膜母細胞瘤基因遺傳學及基因治療新進展[J]. 江西醫藥, 2017, 52(7): 704-707. DOI: 10.3969/j.issn.1006-2238.2017.07.046.Chai Y, Mao T. Recent advances in the genetics and gene therapy of retinoblastoma[J]. Jiangxi Medical Journal, 2017, 52(7): 704-707. DOI: 10.3969/j.issn.1006-2238.2017.07.046.
|
| 4. |
中華醫學會眼科學分會眼底病學組, 中華醫學會兒科學分會眼科學組, 中華醫學會眼科學分會眼整形眼眶病學組. 中國視網膜母細胞瘤診斷和治療指南(2019年)[J]. 中華眼科雜志, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003.Retinal Disease Group, Ophthalmology Group, Pediatrics Branch, Chinese Medical Association, Ophthalmic Plastic and Orbital Disease Group, Ophthalmology Branch, Ophthalmology Branch, Chinese Medical Association. Chinese guidelines for the diagnosis and treatment of tetinoblastoma (2019)[J]. Chin J Ophthalmol, 2019, 55(10): 726-738. DOI: 10.3760/cma.j.issn.0412-4081.2019.10.003.
|
| 5. |
李曉華, 何世坤. 眼科表觀遺傳學研究進展[J]. 中華眼科雜志, 2013, 49(6): 568-573. DOI: 10.3760/cma.j.issn.0412-4081.2013.06.02.Li XH, He SK. The advances of epigenetic research in eye[J]. Chinese Journal of Ophthalmology, 2013, 49(6): 568-573. DOI: 10.3760/cma.j.issn.0412-4081.2013.06.02.
|
| 6. |
Chai P, Jia R, Li Y, et al. Regulation of epigenetic homeostasis in uveal melanoma and retinoblastoma[J/OL]. Prog Retin Eye Res, 2022, 89: 101030[2021-12-01]. https://pubmed.ncbi.nlm.nih.gov/34861419/. DOI: 10.1016/j.preteyeres.2021.101030.
|
| 7. |
Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses[J]. Nature, 2012, 481(7381): 329-334. DOI: 10.1038/nature10733.
|
| 8. |
Yazici H, Wu HC, Tigli H, et al. High levels of global genome methylation in patients with retinoblastoma[J]. Oncol Lett, 2020, 20(1): 715-723. DOI: 10.3892/ol.2020.11613.
|
| 9. |
邢紋嘉, 孫悅叢, 郭濱, 等. 非編碼RNA在眼內惡性腫瘤中的研究進展[J]. 國際免疫學雜志, 2024, 47(3): 283-288. DOI: 10.3760/cma.j.issn.1673-4394.2024.03.009.Xing WJ, Sun YC, Guo B, et al. Research progress of non-coding RNA in intraocular malignant tumors[J]. International Journal of Immunology, 2024, 47(3): 283-288. DOI: 10.3760/cma.j.issn.1673-4394.2024.03.009.
|
| 10. |
榮先芳, 盧奕. 表觀遺傳學在眼科的研究進展[J]. 國際眼科縱覽, 2014, 38(2): 80-86. DOI: 10.3760/cma.j.issn.1673-5803.2014.02.002.Rong XF, Lu Y. Epigenetic research progress in ophthalmology[J]. Int Rev Ophthalmol, 2014, 38(2): 80-86. DOI: 10.3760/cma.j.issn.1673-5803.2014.02.002.
|
| 11. |
Singh U, Malik MA, Goswami S, et al. Epigenetic regulation of human retinoblastoma[J]. Tumour Biol, 2016, 37(11): 14427-14441. DOI: 10.1007/s13277-016-5308-3.
|
| 12. |
Baylin SB, Herman JG, Graff JR, et al. Alterations in DNA methylation: a fundamental aspect of neoplasia[J]. Adv Cancer Res, 1998, 72: 141-196. DOI: 10.1016/s0065-230x(08)60702-2.
|
| 13. |
Livide G, Epistolato MC, Amenduni M, et al. Epigenetic and copy number variation analysis in retinoblastoma by MS-MLPA[J]. Pathol Oncol Res, 2012, 18(3): 703-712. DOI: 10.1007/s12253-012-9498-8.
|
| 14. |
Li HT, Xu L, Weisenberger DJ, et al. Characterizing DNA methylation signatures of retinoblastoma using aqueous humor liquid biopsy[J/OL]. Nat Commun, 2022, 13(1): 5523[2022-09-21]. https://pubmed.ncbi.nlm.nih.gov/36130950/. DOI: 10.1038/s41467-022-33248-2.
|
| 15. |
Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[J]. Proc Natl Acad Sci USA, 2020, 117(52): 33628-33638. DOI: 10.1073/pnas.2011780117.
|
| 16. |
張紅俠, 陳彥舟, 祁健. 組蛋白修飾的研究進展[J]. 中國組織化學與細胞化學雜志, 2022, 31(1): 85-89. DOI: 10.16705/j.cnki.1004-1850.2022.01.014.Zhang HX, Chen YZ, Qi J. Advances in histone modification[J]. Chinese Journal of Histochemistry and Cytochemistry, 2022, 31(1): 85-89. DOI: 10.16705/j.cnki.1004-1850.2022.01.014.
|
| 17. |
Zhou L, Tong Y, Ho BM, et al. Etiology including epigenetic defects of retinoblastoma[J/OL]. Asia Pac J Ophthalmol (Phila), 2024, 13(3): 100072[2024-05-22]. https://pubmed.ncbi.nlm.nih.gov/38789041/. DOI: 10.1016/j.apjo.2024.100072.
|
| 18. |
Lin Z, Tang L, Chen S, et al. EZH2 expression in retinoblastoma: a potential therapeutic target[J]. Ophthalmic Res, 2023, 66(1): 1014-1019. DOI: 10.1159/000531530.
|
| 19. |
Khan M, Walters LL, Li Q, et al. Characterization and pharmacologic targeting of EZH2, a fetal retinal protein and epigenetic regulator, in human retinoblastoma[J]. Lab Invest, 2015, 95(11): 1278-1290. DOI: 10.1038/labinvest.2015.104.
|
| 20. |
Jiang Y, Zheng G, Sun X. PRMT5 promotes retinoblastoma development[J]. Hum Cell, 2023, 36(1): 329-341. DOI: 10.1007/s13577-022-00807-0.
|
| 21. |
Bennett RL, Licht JD. Targeting epigenetics in cancer[J]. Annu Rev Pharmacol Toxicol, 2018, 58: 187-207. DOI: 10.1146/annurev-pharmtox-010716-105106.
|
| 22. |
Chai P, Jia R, Jia R, et al. Dynamic chromosomal tuning of a novel GAU1 lncing driver at chr12p13.32 accelerates tumorigenesis[J]. Nucleic Acids Res, 2018, 46(12): 6041-6056. DOI: 10.1093/nar/gky366.
|
| 23. |
Xu L, Li W, Shi Q, et al. MicroRNA-936 inhibits the malignant phenotype of retinoblastoma by directly targeting HDAC9 and deactivating the PI3K/AKT pathway[J]. Oncol Rep, 2020, 43(2): 635-645. DOI: 10.3892/or.2020.7456.
|
| 24. |
Zhang B, Pan X, Cobb GP, et al. microRNAs as oncogenes and tumor suppressors[J]. Dev Biol, 2007, 302(1): 1-12. DOI: 10.1016/j.ydbio.2006.08.028.
|
| 25. |
Marzi MJ, Puggioni EM, Dall'Olio V, et al. Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation[J]. J Cell Biol, 2012, 199(1): 77-95. DOI: 10.1083/jcb.201206033.
|
| 26. |
Dalgard CL, Gonzalez M, deNiro JE, et al. Differential microRNA-34a expression and tumor suppressor function in retinoblastoma cells[J]. Invest Ophthalmol Vis Sci, 2009, 50(10): 4542-4551. DOI: 10.1167/iovs.09-3520.
|
| 27. |
Liu K, Huang J, Xie M, et al. MIR34A regulates autophagy and apoptosis by targeting HMGB1 in the retinoblastoma cell[J]. Autophagy, 2014, 10(3): 442-452. DOI: 10.4161/auto.27418.
|
| 28. |
Danda R, Krishnan G, Ganapathy K, et al. Targeted expression of suicide gene by tissue-specific promoter and microRNA regulation for cancer gene therapy[J/OL]. PLoS One, 2013, 8(12): e83398[2013-12-31]. https://pubmed.ncbi.nlm.nih.gov/24391761/. DOI: 10.1371/journal.pone.0083398.
|
| 29. |
Conkrite K, Sundby M, Mukai S, et al. miR-17~92 cooperates with RB pathway mutations to promote retinoblastoma[J]. Genes Dev, 2011, 25(16): 1734-1745. DOI: 10.1101/gad.17027411.
|
| 30. |
Jo DH, Kim JH, Cho CS, et al. STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters[J]. Oncotarget, 2014, 5(22): 11513-11525. DOI: 10.18632/oncotarget.2546.
|
| 31. |
Yang G, Fu Y, Zhang L, et al. miR106b regulates retinoblastoma Y79 cells through Runx3[J]. Oncol Rep, 2017, 38(5): 3039-3043. DOI: 10.3892/or.2017.5931.
|
| 32. |
Ghahramani Almanghadim H, Ghorbian S, Khademi NS, et al. New insights into the importance of long non-coding rnas in lung cancer: future clinical approaches[J]. DNA Cell Biol, 2021, 40(12): 1476-1494. DOI: 10.1089/dna.2021.0563.
|
| 33. |
Yan J, Deng YX, Cai YL, et al. LncRNA MIR17HG promotes the proliferation, migration, and invasion of retinoblastoma cells by up-regulating HIF-1α expression via sponging miR-155-5p[J]. Kaohsiung J Med Sci, 2022, 38(6): 554-564. DOI: 10.1002/kjm2.12523.
|
| 34. |
Lyu J, Wang Y, Zheng Q, et al. Reduction of circular RNA expression associated with human retinoblastoma[J]. Exp Eye Res, 2019, 184: 278-285. DOI: 10.1016/j.exer.2019.03.017.
|
| 35. |
Li L, Xia X, Yang T, et al. RNA methylation: a potential therapeutic target in autoimmune disease[J]. Int Rev Immunol, 2024, 43(3): 160-177. DOI: 10.1080/08830185.2023.2280544.
|
| 36. |
陳星燕, 李雪, 付強. RNA甲基化在肺癌中的研究進展[J]. 實用腫瘤學雜志, 2024, 38(6): 421-426. DOI: 10.11904/j.issn.1002-3070.2024.06.011.Chen XY, Li X, Fu Q. Research progress of RNA methylation in lung cancer[J]. Practical Oncology Journal, 2024, 38(6): 421-426. DOI: 10.11904/j.issn.1002-3070.2024.06.011.
|
| 37. |
Zhang H, Zhang P, Long C, et al. m6A methyltransferase METTL3 promotes retinoblastoma progression via PI3K/AKT/mTOR pathway[J]. J Cell Mol Med, 2020, 24(21): 12368-12378. DOI: 10.1111/jcmm.15736.
|
| 38. |
Xie W, Shao Y, Bo Q, et al. FTO promotes the progression of retinoblastoma through YTHDF2-dependent N6-methyladenosine modification in E2F3[J]. Mol Carcinog, 2024, 63(5): 926-937. DOI: 10.1002/mc.23698.
|
| 39. |
Luo Y, He M, Yang J, et al. A novel MYCN-YTHDF1 cascade contributes to retinoblastoma tumor growth by eliciting m6A-dependent activation of multiple oncogenes[J]. Sci China Life Sci, 2023, 66(9): 2138-2151. DOI: 10.1007/s11427-022-2288-4.
|
| 40. |
李莉, 樊玉璽, 夏雨婷, 等. 染色質重塑復合物與基因表達調控的研究進展[J]. 實用醫院臨床雜志, 2022, 19(1): 177-180. DOI: 10.3969/j.issn.1672-6170.2022.01.048.Li L, Fan YX, Xia YT, et al. Advances in chromatin remodeling complexes and gene expression regulation[J]. Practical Journal of Clinical Medicine, 2022, 19(1): 177-180. DOI: 10.3969/j.issn.1672-6170.2022.01.048.
|
| 41. |
陳卉, 王季石. 染色質重塑: 在疾病機制與治療中的新視角[J]. 疑難病雜志, 2024, 23(8): 1016-1020. DOI: 10.3969/j.issn.1671-6450.2024.08.024.Chen H, Wang JS. Chromatin remodeling: new perspectives in disease mechanisms and therapy[J]. Chin J Diffic and Compl Cas, 2024, 23(8): 1016-1020. DOI: 10.3969/j.issn.1671-6450.2024.08.024.
|
| 42. |
閆夢麗, 吳煥文, 梁智勇. SWI/SNF染色質重塑復合物在乳腺癌中的研究現狀[J]. 臨床與實驗病理學雜志, 2021, 37(1): 65-68. DOI: 10.13315/j.cnki.cjcep.2021.01.016.Yan ML, Wu HW, Liang ZY. Research status of SWI/SNF chromatin remodeling complex in breast cancer[J]. J Clin Exp Pathol, 2021, 37(1): 65-68. DOI: 10.13315/j.cnki.cjcep.2021.01.016.
|
| 43. |
Gunawardena RW, Siddiqui H, Solomon DA, et al. Hierarchical requirement of SWI/SNF in retinoblastoma tumor suppressor-mediated repression of Plk1[J]. J Biol Chem, 2004, 279(28): 29278-29285. DOI: 10.1074/jbc.M400395200.
|
| 44. |
林志烽, 陳旭, 李炳毅, 等. DNA甲基轉移酶抑制劑抗腫瘤的免疫機制及其在腫瘤免疫治療中的應用[J]. 細胞與分子免疫學雜志, 2017, 33(12): 1706-1710. DOI: 10.13423/j.cnki.cjcmi.008518.Lin ZF, Chen X, Li BY, et al. The anti-tumor immune mechanism of DNA methyltransferase inhibitors and its application in tumor immunotherapy[J]. Chin J Cell Mol Immunol, 2017, 33(12): 1706-1710. DOI: 10.13423/j.cnki.cjcmi.008518.
|
| 45. |
杜亞楠, 李茹恬, 謝麗. 組蛋白去乙酰化酶抑制劑在乳腺癌中的研究進展[J]. 現代腫瘤醫學, 2024, 32(24): 4674-4679. DOI: 10.3969/j.issn.1672-4992.2024.24.014.Du YN, Li RT, Xie L. Research progress of histone deacetylase inhibitors in breast cancer[J]. Modern Oncology, 2024, 32(24): 4674-4679. DOI: 10.3969/j.issn.1672-4992.2024.24.014.
|
| 46. |
Hoy SM. Tazemetostat: first approval[J]. Drugs, 2020, 80(5): 513-521. DOI: 10.1007/s40265-020-01288-x.
|
| 47. |
鄧玥, 黃洵. 表觀遺傳抗腫瘤藥物的研發進展[J]. 中國腫瘤臨床, 2023, 50(6): 278-285. DOI: 10.12354/j.issn.1000-8179.2023.20221256.Deng Y, Huang X, Advances in epigenetic anti-tumor drug development[J]. Chin J Clin Oncol, 2023, 50(6): 278-285. DOI: 10.12354/j.issn.1000-8179.2023.20221256.
|
| 48. |
Yu N, Chen P, Wang Q, et al. Histone deacetylase inhibitors differentially regulate c-Myc expression in retinoblastoma cells[J]. Oncol Lett, 2020, 19(1): 460-468. DOI: 10.3892/ol.2019.11111.
|