| 1. |
Han X, Gharahkhani P, Mitchell P, et al. Genome-wide meta-analysis identifies novel loci associated with age-related macular degeneration[J]. J Hum Genet, 2020, 65(8): 657-665. DOI: 10.1038/s10038-020-0750-x.
|
| 2. |
Song P, Du Y, Chan KY, et al. The national and subnational prevalence and burden of age-related macular degeneration in China[J/OL]. J Glob Health, 2017, 7(2): 020703[2017-12-01]. https://pubmed.ncbi.nlm.nih.gov/29302323/. DOI: 10.7189/jogh.07.020703.
|
| 3. |
中華醫學會眼科學分會眼底病學組, 中國醫師協會眼科醫師分會眼底病學組. 中國年齡相關性黃斑變性臨床診療指南(2023年)[J]. 中華眼科雜志, 2023, 59(5): 347-366. DOI: 10.3760/cma.j.cn112142-20221222-00649.Retinal Disease Group, Ophthalmology Branch of Chinese Medical Association, Retinal Disease Group, Ophthalmology Branch of Chinese Medical Doctor Association. Evidence-based guidelines for diagnosis and treatment of age-related macular degeneration in China (2023)[J]. Chin J Ophthalmol, 2023, 59(5): 347-366. DOI: 10.3760/cma.j.cn112142-20221222-00649.
|
| 4. |
Sarks S, Cherepanoff S, Killingsworth M, et al. Relationship of Basal laminar deposit and membranous debris to the clinical presentation of early age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2007, 48(3): 968-977. DOI: 10.1167/iovs.06-0443.
|
| 5. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Age-related macular degeneration preferred practice pattern?[J]. Ophthalmology, 2020, 127(1): 1-65. DOI: 10.1016/j.ophtha.2019.09.024.
|
| 6. |
Mettu PS, Allingham MJ, Cousins SW. Incomplete response to anti-VEGF therapy in neovascular AMD: exploring disease mechanisms and therapeutic opportunities[J/OL]. Prog Retin Eye Res, 2021, 82: 100906[2021-10-03]. https://pubmed.ncbi.nlm.nih.gov/33022379/. DOI: 10.1016/j.preteyeres.2020.100906.
|
| 7. |
Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration[J]. Med Clin North Am, 2021, 105(3): 473-491. DOI: 10.1016/j.mcna.2021.01.003.
|
| 8. |
Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group[J]. Ophthalmology, 2020, 127(5): 616-636. DOI: 10.1016/j.ophtha.2019.11.004.
|
| 9. |
Elsheikh RH, Chauhan MZ, Sallam AB. Current and novel therapeutic approaches for treatment of neovascular age-related macular degeneration[J/OL]. Biomolecules, 2022, 12(11): 1629[2022-11-03]. https://pubmed.ncbi.nlm.nih.gov/36358978/. DOI: 10.3390/biom12111629.
|
| 10. |
Ricklin D, Hajishengallis G, Yang K, et al. Complement: a key system for immune surveillance and homeostasis[J]. Nat Immunol, 2010, 11(9): 785-797. DOI: 10.1038/ni.1923.
|
| 11. |
Menny A, Serna M, Boyd C M, et al. CryoEM reveals how the complement membrane attack complex ruptures lipid bilayers[J/OL]. Nat Commun, 2018, 9(1): 5316[2018-12-14]. https://pubmed.ncbi.nlm.nih.gov/30552328/. DOI: 10.1038/s41467-018-07653-5.
|
| 12. |
Black JR, Clark SJ. Age-related macular degeneration: genome-wide association studies to translation[J]. Genet Med, 2016, 18(4): 283-289. DOI: 10.1038/gim.2015.70.
|
| 13. |
Fritsche LG, Chen W, Schu M, et al. Seven new loci associated with age-related macular degeneration[J]. Nat Genet, 2013, 45(4): 433-439. DOI: 10.1038/ng.2578.
|
| 14. |
Yanagisawa S, Kondo N, Miki A, et al. A common complement C3 variant is associated with protection against wet age-related macular degeneration in a Japanese population[J/OL]. PLoS One, 2011, 6(12): e28847[2011-12-12]. https://pubmed.ncbi.nlm.nih.gov/22174912/. DOI: 10.1371/journal.pone.0028847.
|
| 15. |
Yates JR, Sepp T, Matharu BK, et al. Complement C3 variant and the risk of age-related macular degeneration[J]. N Engl J Med, 2007, 357(6): 553-561. DOI: 10.1056/NEJMoa072618.
|
| 16. |
Sofat R, Casas JP, Webster AR, et al. Complement factor H genetic variant and age-related macular degeneration: effect size, modifiers and relationship to disease subtype[J]. Int J Epidemiol, 2012, 41(1): 250-262. DOI: 10.1093/ije/dyr204.
|
| 17. |
Wang Q, Zhao HS, Li L. Association between complement factor Ⅰ gene polymorphisms and the risk of age-related macular degeneration: a meta-analysis of literature[J]. Int J Ophthalmol, 2016, 9(2): 298-305. DOI: 10.18240/ijo.2016.02.23.
|
| 18. |
Nishiguchi KM, Yasuma TR, Tomida D, et al. C9-R95X polymorphism in patients with neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2012, 53(1): 508-512. DOI: 10.1167/iovs.11-8425.
|
| 19. |
Jensen EG, Jakobsen TS, Thiel S, et al. Associations between the complement system and choroidal neovascularization in wet age-related macular degeneration[J/OL]. Int J Mol Sci, 2020, 21(24): 9752[2020-12-21]. https://pubmed.ncbi.nlm.nih.gov/33371261/. DOI: 10.3390/ijms21249752.
|
| 20. |
Altay L, Sitnilska V, Schick T, et al. Early local activation of complement in aqueous humour of patients with age-related macular degeneration[J]. Eye (Lond), 2019, 33(12): 1859-1864. DOI: 10.1038/s41433-019-0501-4.
|
| 21. |
Nozaki M, Raisler BJ, Sakurai E, et al. Drusen complement components C3a and C5a promote choroidal neovascularization[J]. Proc Natl Acad Sci USA, 2006, 103(7): 2328-2333. DOI: 10.1073/pnas.0408835103.
|
| 22. |
Park YG, Park YS, Kim IB. Complement system and potential therapeutics in age-related macular degeneration[J]. Int J Mol Sci, 2021, 22(13): 6851. DOI: 10.3390/ijms22136851.
|
| 23. |
Trakkides TO, Sch?fer N, Reichenthaler M, et al. Oxidative stress increases endogenous complement-dependent inflammatory and angiogenic responses in retinal pigment epithelial cells independently of exogenous complement sources[J]. Antioxidants (Basel), 2019, 8(11): 548. DOI: 10.3390/antiox8110548.
|
| 24. |
Long Q, Cao X, Bian A, et al. C3a increases VEGF and decreases PEDF mRNA levels in human retinal pigment epithelial cells[J/OL]. Biomed Res Int, 2016, 2016: 6958752[2016-09-22]. https://pubmed.ncbi.nlm.nih.gov/27747237/. DOI: 10.1155/2016/6958752.
|
| 25. |
Tan X, Fujiu K, Manabe I, et al. Choroidal neovascularization is inhibited via an intraocular decrease of inflammatory cells in mice lacking complement component C3[J/OL]. Sci Rep, 2015, 5: 15702[2015-10-28]. https://pubmed.ncbi.nlm.nih.gov/26507897/. DOI: 10.1038/srep15702.
|
| 26. |
Llorián-Salvador M, Byrne EM, Szczepan M, et al. Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells[J/OL]. J Neuroinflammation, 2022, 19(1): 182[2022-07-14]. https://pubmed.ncbi.nlm.nih.gov/35831910/. DOI: 10.1186/s12974-022-02546-3.
|
| 27. |
Jo DH, Kim JH, Yang W, et al. Anti-complement component 5 antibody targeting MG4 domain inhibits choroidal neovascularization[J]. Oncotarget, 2017, 8(28): 45506-45516. DOI: 10.18632/oncotarget.17221.
|
| 28. |
Bora NS, Kaliappan S, Jha P, et al. Complement activation via alternative pathway is critical in the development of laser-induced choroidal neovascularization: role of factor B and factor H[J]. J Immunol, 2006, 177(3): 1872-1878. DOI: 10.4049/jimmunol.177.3.1872.
|
| 29. |
Rohrer B. Anaphylatoxin signaling in retinal pigment and choroidal endothelial cells: characteristics and relevance to age-related macular degeneration[J]. Adv Exp Med Biol, 2018, 1074: 45-51. DOI: 10.1007/978-3-319-75402-4_6.
|
| 30. |
Cortright DN, Meade R, Waters SM, et al. C5a, but not C3a, increases VEGF secretion in ARPE-19 human retinal pigment epithelial cells[J]. Curr Eye Res, 2009, 34(1): 57-61. DOI: 10.1080/02713680802546658.
|
| 31. |
Kunchithapautham K, Atkinson C, Rohrer B. Smoke exposure causes endoplasmic reticulum stress and lipid accumulation in retinal pigment epithelium through oxidative stress and complement activation[J]. J Biol Chem, 2014, 289(21): 14534-14546. DOI: 10.1074/jbc.M114.564674.
|
| 32. |
Coughlin B, Schnabolk G, Joseph K, et al. Connecting the innate and adaptive immune responses in mouse choroidal neovascularization via the anaphylatoxin C5a and γδT-cells[J/OL]. Sci Rep, 2016, 6: 23794[2016-04-31]. https://pubmed.ncbi.nlm.nih.gov/27029558/. DOI: 10.1038/srep23794.
|
| 33. |
Brockmann C, Brockmann T, Dege S, et al. Intravitreal inhibition of complement C5a reduces choroidal neovascularization in mice[J]. Graefe's Arch Clin Exp Ophthalmol, 2015, 253(10): 1695-1704. DOI: 10.1007/s00417-015-3041-z.
|
| 34. |
Xiong Z, Wang Q, Li W, et al. Platelet-derived growth factor-D activates complement system to propagate macrophage polarization and neovascularization[J/OL]. Front Cell Dev Biol, 2021, 9: 686886[2021-06-02]. https://pubmed.ncbi.nlm.nih.gov/34150781/. DOI: 10.3389/fcell.2021.686886.
|
| 35. |
Kunchithapautham K, Bandyopadhyay M, Dahrouj M, et al. Sublytic membrane-attack-complex activation and VEGF secretion in retinal pigment epithelial cells[J]. Adv Exp Med Biol, 2012, 723: 23-30. DOI: 10.1007/978-1-4614-0631-0_4.
|
| 36. |
Fosbrink M, Niculescu F, Rus V, et al. C5b-9-induced endothelial cell proliferation and migration are dependent on Akt inactivation of forkhead transcription factor FOXO1[J]. J Biol Chem, 2006, 281(28): 19009-19018. DOI: 10.1074/jbc.M602055200.
|
| 37. |
Lueck K, Wasmuth S, Williams J, et al. Sub-lytic C5b-9 induces functional changes in retinal pigment epithelial cells consistent with age-related macular degeneration[J]. Eye (Lond), 2011, 25(8): 1074-1082. DOI: 10.1038/eye.2011.109.
|
| 38. |
Kunchithapautham K, Rohrer B. Sublytic membrane-attack-complex (MAC) activation alters regulated rather than constitutive vascular endothelial growth factor (VEGF) secretion in retinal pigment epithelium monolayers[J]. J Biol Chem, 2011, 286(27): 23717-23724. DOI: 10.1074/jbc.M110.214593.
|
| 39. |
Bora PS, Sohn JH, Cruz JM, et al. Role of complement and complement membrane attack complex in laser-induced choroidal neovascularization[J]. J Immunol, 2005, 174(1): 491-497. DOI: 10.4049/jimmunol.174.1.491.
|
| 40. |
Lipo E, Cashman SM, Kumar-Singh R. Aurintricarboxylic acid inhibits complement activation, membrane attack complex, and choroidal neovascularization in a model of macular degeneration[J]. Invest Ophthalmol Vis Sci, 2013, 54(10): 7107-7114. DOI: 10.1167/iovs.13-12923.
|
| 41. |
Liu J, Jha P, Lyzogubov VV, et al. Relationship between complement membrane attack complex, chemokine (C-C motif) ligand 2 (CCL2) and vascular endothelial growth factor in mouse model of laser-induced choroidal neovascularization[J]. J Biol Chem, 2011, 286(23): 20991-21001. DOI: 10.1074/jbc.M111.226266.
|
| 42. |
Wickham SE, Hotze EM, Farrand AJ, et al. Mapping the intermedilysin-human CD59 receptor interface reveals a deep correspondence with the binding site on CD59 for complement binding proteins C8alpha and C9[J]. J Biol Chem, 2011, 286(23): 20952-20962. DOI: 10.1074/jbc.M111.237446.
|
| 43. |
Schnabolk G, Beon MK, Tomlinson S, et al. New insights on complement inhibitor CD59 in mouse laser-induced choroidal neovascularization: mislocalization after injury and targeted delivery for protein replacement[J]. J Ocul Pharmacol Ther, 2017, 33(5): 400-411. DOI: 10.1089/jop.2016.0101.
|
| 44. |
Bora NS, Jha P, Lyzogubov VV, et al. Recombinant membrane-targeted form of CD59 inhibits the growth of choroidal neovascular complex in mice[J]. J Biol Chem, 2010, 285(44): 33826-33833. DOI: 10.1074/jbc.M110.153130.
|
| 45. |
Chen G, Tzekov R, Li W, et al. Pharmacogenetics of complement factor H Y402H polymorphism and treatment of neovascular AMD with anti-VEGF agents: a meta-analysis[J/OL]. Sci Rep, 2015, 5: 14517[2015-09-28]. https://pubmed.ncbi.nlm.nih.gov/26411831/. DOI: 10.1038/srep14517.
|
| 46. |
Marazita MC, Dugour A, Marquioni-Ramella MD, et al. Oxidative stress-induced premature senescence dysregulates VEGF and CFH expression in retinal pigment epithelial cells: implications for age-related macular degeneration[J]. Redox Biol, 2016, 7: 78-87. DOI: 10.1016/j.redox.2015.11.011.
|
| 47. |
Armento A, Schmidt TL, Sonntag I, et al. CFH Loss in human RPE cells leads to inflammation and complement system dysregulation via the NF-κB pathway[J/OL]. Int J Mol Sci, 2021, 22(16): 8727[2021-08-13]. https://pubmed.ncbi.nlm.nih.gov/34445430/. DOI: 10.3390/ijms22168727.
|
| 48. |
Lundh Von Leithner P, Kam JH, Bainbridge J, et al. Complement factor h is critical in the maintenance of retinal perfusion[J]. Am J Pathol, 2009, 175(1): 412-421. DOI: 10.2353/ajpath.2009.080927.
|
| 49. |
Lyzogubov VV, Tytarenko RG, Jha P, et al. Role of ocular complement factor H in a murine model of choroidal neovascularization[J]. Am J Pathol, 2010, 177(4): 1870-1880. DOI: 10.2353/ajpath.2010.091168.
|
| 50. |
Borras C, Delaunay K, Slaoui Y, et al. Mechanisms of FH protection against neovascular AMD[J/OL]. Front Immunol, 2020, 11: 443[2020-04-03]. https://pubmed.ncbi.nlm.nih.gov/32318056/. DOI: 10.3389/fimmu.2020.00443.
|
| 51. |
Rohrer B, Coughlin B, Kunchithapautham K, et al. The alternative pathway is required, but not alone sufficient, for retinal pathology in mouse laser-induced choroidal neovascularization[J/OL]. Mol Immunol, 2011, 48(6-7): e1-8[2011-01-22]. https://pubmed.ncbi.nlm.nih.gov/21257205/. DOI: 10.1016/j.molimm.2010.12.016.
|
| 52. |
Schnabolk G, Coughlin B, Joseph K, et al. Local production of the alternative pathway component factor B is sufficient to promote laser-induced choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2015, 56(3): 1850-1863. DOI: 10.1167/iovs.14-15910.
|
| 53. |
Little K, Llorián-Salvador M, Tang M, et al. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration[J/OL]. J Neuroinflammation, 2020, 17(1): 355[2020-11-25]. https://pubmed.ncbi.nlm.nih.gov/33239022/. DOI: 10.1186/s12974-020-02033-7.
|
| 54. |
Pras E, Kristal D, Shoshany N, et al. Rare genetic variants in Tunisian Jewish patients suffering from age-related macular degeneration[J]. J Med Genet, 2015, 52(7): 484-492. DOI: 10.1136/jmedgenet-2015-103130.
|
| 55. |
de Breuk A, Lechanteur YTE, Heesterbeek TJ, et al. Genetic risk in families with age-related macular degeneration[J/OL]. Ophthalmol Sci, 2021, 1(4): 100087[2021-12-06]. https://pubmed.ncbi.nlm.nih.gov/36246952/. DOI: 10.1016/j.xops.2021.100087.
|
| 56. |
Yang F, Sun Y, Jin Z, et al. Complement factor I polymorphism is not associated with neovascular age-related macular degeneration and polypoidal choroidal vasculopathy in a Chinese population[J]. Ophthalmologica, 2014, 232(1): 37-45. DOI: 10.1159/000358241.
|
| 57. |
Leveziel N, Yu Y, Reynolds R, et al. Genetic factors for choroidal neovascularization associated with high myopia[J]. Invest Ophthalmol Vis Sci, 2012, 53(8): 5004-5009. DOI: 10.1167/iovs.12-9538.
|
| 58. |
Miyake M, Yamashiro K, Nakanishi H, et al. Evaluation of pigment epithelium-derived factor and complement factor I polymorphisms as a cause of choroidal neovascularization in highly myopic eyes[J]. Invest Ophthalmol Vis Sci, 2013, 54(6): 4208-4212. DOI: 10.1167/iovs.13-12280.
|
| 59. |
van den Bos RM, Pearce NM, Granneman J, et al. Insights into enhanced complement activation by structures of properdin and its complex with the C-terminal domain of C3b[J/OL]. Front Immunol, 2019, 10: 2097[2019-09-04]. https://pubmed.ncbi.nlm.nih.gov/31552043/. DOI: 10.3389/fimmu.2019.02097.
|
| 60. |
Wolf-Schnurrbusch UE, Stuck AK, Hess R, et al. Complement factor P in choroidal neovascular membranes of patients with age-related macular degeneration[J]. Retina, 2009, 29(7): 966-973. DOI: 10.1097/IAE.0b013e3181a2f40f.
|
| 61. |
Sch?fer N, Wolf HN, Enzbrenner A, et al. Properdin modulates complement component production in stressed human primary retinal pigment epithelium cells[J/OL]. Antioxidants (Basel), 2020, 9(9): 793[2020-08-26]. https://pubmed.ncbi.nlm.nih.gov/32859013/. DOI: 10.3390/antiox9090793.
|