| 1. |
Jung JJ, Chen CY, Mrejen S, et al. The incidence of neovascular subtypes in newly diagnosed neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2014, 158(4): 769-779. DOI: 10.1016/j.ajo.2014.07.006.
|
| 2. |
Fleckenstein M, Schmitz-Valckenberg S, Chakravarthy U. Age-related macular degeneration: a review[J]. JAMA, 2024, 331(2): 147-157. DOI: 10.1001/jama.2023.26074.
|
| 3. |
Mettu PS, Allingham MJ, Cousins SW. Incomplete response to anti-VEGF therapy in neovascular AMD: exploring disease mechanisms and therapeutic opportunities[J/OL]. Prog Retin Eye Res, 2021, 82: 100906[2020-10-03]. https://pubmed.ncbi.nlm.nih.gov/33022379/. DOI: 10.1016/j.preteyeres.2020.100906.
|
| 4. |
Sharma A, Kumar N, Kuppermann BD, et al. Faricimab: expanding horizon beyond VEGF[J]. Eye (Lond), 2020, 34(5): 802-804. DOI: 10.1038/s41433-019-0670-1.
|
| 5. |
Regula JT, Lundh VLP, Foxton R, et al. Targeting key angiogenic pathways with a bispecific CrossMAb optimized for neovascular eye diseases[J]. EMBO Mol Med, 2016, 8(11): 1265-1288. DOI: 10.15252/emmm.201505889.
|
| 6. |
Akwii RG, Sajib MS, Zahra FT, et al. Role of angiopoietin-2 in vascular physiology and pathophysiology[J/OL]. Cells, 2019, 8(5): 471[2019-05-17]. https://pubmed.ncbi.nlm.nih.gov/31108880/. DOI: 10.3390/cells8050471.
|
| 7. |
Heier JS, Khanani AM, Quezada RC, et al. Efficacy, durability, and safety of intravitreal faricimab up to every 16 weeks for neovascular age-related macular degeneration (TENAYA and LUCERNE): two randomised, double-masked, phase 3, non-inferiority trials[J]. Lancet, 2022, 399(10326): 729-740. DOI: 10.1016/S0140-6736(22)00010-1.
|
| 8. |
Spaide RF, Jaffe GJ, Sarraf D, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group[J]. Ophthalmology, 2020, 127(5): 616-636. DOI: 10.1016/j.ophtha.2019.11.004.
|
| 9. |
Goodchild C, Bailey C, Soto HJ, et al. Real world efficacy and durability of faricimab in patients with neovascular AMD (nAMD) who had sub-optimal response to prior anti-VEGF therapy[J]. Eye (Lond), 2024, 38(16): 3059-3064. DOI: 10.1038/s41433-024-03218-7.
|
| 10. |
Martin DF, Maguire MG, Ying GS, et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration[J]. N Engl J Med, 2011, 364(20): 1897-1908. DOI: 10.1056/NEJMoa1102673.
|
| 11. |
Ng B, Kolli H, Ajith KN, et al. Real-world data on Faricimab switching in treatment-refractory neovascular age-related macular degeneration[J/OL]. Life (Basel), 2024, 14(2): 193[2024-01-29]. https://pubmed.ncbi.nlm.nih.gov/38398702/. DOI: 10.3390/life14020193.
|
| 12. |
Nadel A, Drakopoulos M, Bains HK, et al. Analysis of quantitative OCT and SS-OCTA metrics three months after initiation of intravitreal faricimab for treatment-recalcitrant neovascular AMD[J]. Eye (Lond), 2025, 39(7): 1337-1343. DOI: 10.1038/s41433-024-03583-3.
|
| 13. |
Khanani AM, Aziz AA, Khan H, et al. The real-world efficacy and safety of faricimab in neovascular age-related macular degeneration: the TRUCKEE study-6 month results[J]. Eye (Lond), 2023, 37(17): 3574-3581. DOI: 10.1038/s41433-023-02553-5.
|
| 14. |
Stanga PE, Valentin-Bravo FJ, Stanga S, et al. Faricimab in neovascular AMD: first report of real-world outcomes in an independent retina clinic[J]. Eye (Lond), 2023, 37(15): 3282-3289. DOI: 10.1038/s41433-023-02505-z.
|
| 15. |
Jones N, Gore C, Saedon H, et al. Efficacy of treatment with faricimab for patients with refractory nAMD[J]. Eur J Ophthalmol, 2025, 35(5): 1695-1702. DOI: 10.1177/11206721251328097.
|
| 16. |
Heinke A, Warter A, Nagel ID, et al. Faricimab for treatment-resistant choroidal neovascularization (CNV) in neovascular age-related macular degeneration (nAMD): seven-months results using artificial intelligence and OCTA[J/OL]. Int J Retina Vitreous, 2025, 11(1): 68[2025-06-17]. https://pubmed.ncbi.nlm.nih.gov/40528210/. DOI: 10.1186/s40942-025-00691-4.
|
| 17. |
Yang J, Zhang Q, Motulsky EH, et al. Two-year risk of exudation in eyes with nonexudative age-related macular degeneration and subclinical neovascularization detected with swept source optical coherence tomography angiography[J]. Am J Ophthalmol, 2019, 208: 1-11. DOI: 10.1016/j.ajo.2019.06.017.
|
| 18. |
Pilotto E, Frizziero L, Daniele AR, et al. Early OCT angiography changes of type 1 CNV in exudative AMD treated with anti-VEGF[J]. Br J Ophthalmol, 2019, 103(1): 67-71. DOI: 10.1136/bjophthalmol-2017-311752.
|
| 19. |
Takeuchi J, Kataoka K, Ito Y, et al. Optical coherence tomography angiography to quantify choroidal neovascularization in response to Aflibercept[J]. Ophthalmologica, 2018, 240(2): 90-98. DOI: 10.1159/000487611.
|
| 20. |
Yancopoulos GD. Clinical application of therapies targeting VEGF[J]. Cell, 2010, 143(1): 13-16. DOI: 10.1016/j.cell.2010.09.028.
|
| 21. |
Scholz A, Plate KH, Reiss Y. Angiopoietin-2: a multifaceted cytokine that functions in both angiogenesis and inflammation[J]. Ann NY Acad Sci, 2015, 1347: 45-51. DOI: 10.1111/nyas.12726.
|
| 22. |
Khan M, Aziz AA, Shafi NA, et al. Targeting angiopoietin in retinal vascular diseases: a literature review and summary of clinical trials involving Faricimab[J/OL]. Cells, 2020, 9(8): 1869[2020-08-10]. https://pubmed.ncbi.nlm.nih.gov/32785136/. DOI: 10.3390/cells9081869.
|
| 23. |
Foxton RH, Uhles S, Gruner S, et al. Efficacy of simultaneous VEGF-A/ANG-2 neutralization in suppressing spontaneous choroidal neovascularization[J/OL]. EMBO Mol Med, 2019, 11(5): e10204[2019-05-01]. https://pubmed.ncbi.nlm.nih.gov/31040126/. DOI: 10.15252/emmm.201810204.
|
| 24. |
Spaide RF, Fujimoto JG, Waheed NK. Image artifacts in optical coherence tomography angiography[J]. Retina, 2015, 35(11): 2163-2180. DOI: 10.1097/IAE.0000000000000765.
|
| 25. |
Huang D, Jia Y, Rispoli M, et al. Optical coherence tomography angiography of time course of choroidal neovascularization in response to anti-angiogenic treatment[J]. Retina, 2015, 35(11): 2260-2264. DOI: 10.1097/IAE.0000000000000846.
|
| 26. |
Lumbroso B, Rispoli M, Savastano MC. Longitudinal optical coherence tomography-angiography study of type 2 naive choroidal neovascularization early response after treatment[J]. Retina, 2015, 35(11): 2242-2251. DOI: 10.1097/IAE.0000000000000879.
|
| 27. |
Pandit SA, Momenaei B, Wakabayashi T, et al. Clinical outcomes of Faricimab in patients with previously treated neovascular age-related macular degeneration[J]. Ophthalmol Retina, 2024, 8(4): 360-366. DOI: 10.1016/j.oret.2023.10.018.
|
| 28. |
Rush RB. One-year outcomes of Faricimab treatment for Aflibercept-resistant neovascular age-related macular degeneration[J]. Clin Ophthalmol, 2023, 17: 2201-2208. DOI: 10.2147/OPTH.S424315.
|
| 29. |
Matsumoto H, Hoshino J, Nakamura K, et al. Short-term outcomes of intravitreal faricimab for treatment-naive neovascular age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2023, 261(10): 2945-2952. DOI: 10.1007/s00417-023-06116-y.
|
| 30. |
Mukai R, Kataoka K, Tanaka K, et al. Three-month outcomes of faricimab loading therapy for wet age-related macular degeneration in Japan[J/OL]. Sci Rep, 2023, 13(1): 8747[2023-05-30]. https://pubmed.ncbi.nlm.nih.gov/37253802/. DOI: 10.1038/s41598-023-35759-4.
|
| 31. |
Eckardt F, Lorger A, Hafner M, et al. Retinal and choroidal efficacy of switching treatment to faricimab in recalcitrant neovascular age related macular degeneration[J/OL]. Sci Rep, 2024, 14(1): 9600[2024-04-26]. https://pubmed.ncbi.nlm.nih.gov/38671028/. DOI: 10.1038/s41598-024-59632-0.
|
| 32. |
Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review[J]. Drug Des Devel Ther, 2016, 10: 1857-1867. DOI: 10.2147/DDDT.S97653.
|
| 33. |
Keane PA, Liakopoulos S, Ongchin SC, et al. Quantitative subanalysis of optical coherence tomography after treatment with ranibizumab for neovascular age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2008, 49(7): 3115-3120. DOI: 10.1167/iovs.08-1689.
|
| 34. |
Marquis LM, Mantel I. Beneficial switch from aflibercept to ranibizumab for the treatment of refractory neovascular age-related macular degeneration[J]. Graefe's Arch Clin Exp Ophthalmol, 2020, 258(8): 1591-1596. DOI: 10.1007/s00417-020-04730-8.
|
| 35. |
Balikova I, Postelmans L, Pasteels B, et al. Genetic biomarkers in the VEGF pathway predicting response to anti-VEGF therapy in age-related macular degeneration[J/OL]. BMJ Open Ophthalmol, 2019, 4(1): e273[2019-12-17]. https://pubmed.ncbi.nlm.nih.gov/31909188/. DOI: 10.1136/bmjophth-2019-000273.
|