| 1. |
Vofo BN, Chowers I. Suppressing inflammation for the treatment of diabetic retinopathy and age-related macular degeneration: dazdotuftide as a potential new multitarget therapeutic candidate[J/OL]. Biomedicines, 2023, 11(6): 1562[2023-05-27]. https://pubmed.ncbi.nlm.nih.gov/37371657/. DOI: 10.3390/biomedicines11061562.
|
| 2. |
Li J, Wei D, Mao M, et al. Ultra-widefield color fundus photography combined with high- speed ultra-widefield swept-source optical coherence tomography angiography for non-invasive detection of lesions in diabetic retinopathy[J/OL]. Front Public Health, 2022, 10: 1047608[2022-11-02]. https://pubmed.ncbi.nlm.nih.gov/36408020/. DOI: 10.3389/fpubh.2022.1047608.
|
| 3. |
Niemeijer M, van Ginneken B, Russell SR, et al. Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis[J]. Invest Ophthalmol Vis Sci, 2007, 48(5): 2260-2267. DOI: 10.1167/iovs.06-0996.
|
| 4. |
Fenner BJ, Wong RLM, Lam WC, et al. Advances in retinal imaging and applications in diabetic retinopathy screening: a review[J]. Ophthalmol Ther, 2018, 7(2): 333-346. DOI: 10.1007/s40123-018-0153-7.
|
| 5. |
Dallas EG, Clement RA, Taylor DS. Diagnosis from fundus photographs[J]. Br J Ophthalmol, 2007, 91(5): 608-612. DOI: 10.1136/bjo.2006.105726.
|
| 6. |
Graber ML, Wachter RM, Cassel CK. Bringing diagnosis into the quality and safety equations[J]. JAMA, 2012, 308(12): 1211-1212. DOI: 10.1001/2012.jama.11913.
|
| 7. |
Arkin E, Yadikar N, Xu X, et al. A survey: object detection methods from CNN to transformer[J]. Multimedia Tools Appl, 2022, 82(14): 21353-21383. DOI: 10.1007/s11042-022-13801-3.
|
| 8. |
Rodriguez D, Nayak T, Chen Y, et al. On the role of deep learning model complexity in adversarial robustness for medical images[J/OL]. BMC Med Inform Decis Mak, 2022, 22(Suppl 2): 160[2022-06-20]. https://pubmed.ncbi.nlm.nih.gov/35725429/. DOI: 10.1186/s12911-022-01891-w.
|
| 9. |
Xiao P, Qin Z, Chen D, et al. FastNet: a lightweight convolutional neural network for tumors fast identification in mobile-computer-assisted devices[J]. IEEE IoT J, 2023, 10(11): 9878-9891. DOI: 10.1109/jiot.2023.3235651.
|
| 10. |
Zhang P, Zhao F, Liu P, et al. Efficient lightweight attention network for face recognition[J] IEEE Access, 2022, 10: 31740-31750. DOI: 101109/ACCESS20223150862.
|
| 11. |
Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2020: 6105-6114.
|
| 12. |
Lu G, Zhang W, Wang Z. Optimizing depthwise separable convolution operations on GPUs[J]. IEEE Trans Parallel Distrib Syst, 2021, 30: 70-87. DOI: 10.1109/TPDS.2021.3084813.
|
| 13. |
Seo Y, Kim J, Park U. Swish-T: enhancing swish activation with Tanh bias for improved neural network performance[EB/OL]. (2024-07-01)[2024-07-03]. https://doi.org/10.48550/arXiv.2407.01012 .
|
| 14. |
Lawrence T, Zhang L. IoTNet: an efficient and accurate convolutional neural network for IoT devices[J]. Sensors, 2019, 19(24): 27. DOI: 10.3390/s19245541.
|
| 15. |
Dang L, Pang P, Lee J. Depth-wise separable convolution neural network with residual connection for hyperspectral image classification[J/OL]. Remote Sens, 2020, 12(20): 3408[2020-10-17]. https://www.mdpi.com/2072-4292/12/20/3408. DOI: 10.3390/rs12203408.
|
| 16. |
Wang Z, Xie X, Yang J, et al. RA-Net: reverse attention for generalizing residual learning[J/OL]. Sci Rep, 2024, 14(1): 12771[2024-06-04]. https://pubmed.ncbi.nlm.nih.gov/38834620/. DOI: 10.1038/s41598-024-63623-6.
|
| 17. |
Yahya AA, Liu K, Hawbani A, et al. A novel image classification method based on residual network, inception, and proposed activation function[J/OL]. Sensors (Basel), 2023, 23(6): 2976[2023-03-09]. https://pubmed.ncbi.nlm.nih.gov/36991687/. DOI: 10.3390/s23062976.
|
| 18. |
Siu C. Residual networks behave like boosting algorithms[C]//2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA), IEEE, 2019: 1-8.
|
| 19. |
Liu H, Brock A, Simonyan K, et al. Evolving normalization-activation layers[EB/OL]. (2020-04-06) [2024-07-17]. https://doi.org/10.48550/arXiv.2004.02967 .
|
| 20. |
Xu J, Zhao Y, Xu F. RDPNet: a single-path lightweight CNN with re-parameterization for CPU-type edge devices[J]. J Cloud Comput, 2022, 11(1): 1-13. DOI: 10.1186/s13677-022-00330-5.
|
| 21. |
Chen H, Lin M, Sun X, et al. MuffNet: multi-layer feature federation for mobile deep learning[C]//2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW). IEEE, 2019: 2943-2952.
|
| 22. |
Chang B, Meng L, Haber E, et al. Reversible architectures for arbitrarily deep residual neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence, AAAI, 2018.
|
| 23. |
Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, 2019.
|
| 24. |
Cen LP, Ji J, Lin JW, et al. Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks[J/OL]. Nat Commun, 12(1): 4828[2021-08-10]. https://pubmed.ncbi.nlm.nih.gov/34376678/. DOI: 10.1038/s41467-021-25138-w.
|
| 25. |
Rajalakshmi R, Subashini R, Anjana RM, et al. Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence[J]. Eye, 2018, 32(6): 1138-1144. DOI: 10.1038/s41433-018-0064-9.
|
| 26. |
Li B, Chen H, Yu W, et al. The performance of a deep learning system in assisting junior ophthalmologists in diagnosing 13 major fundus diseases: a prospective multi-center clinical trial[J/OL]. NPJ Digit Med, 2024, 7(1): 8[2024-01-11]. https://pubmed.ncbi.nlm.nih.gov/38212607/. DOI: 10.1038/s41746-023-00991-9.
|
| 27. |
Pietro?aj M, Blok M. Neural network training with limited precision and asymmetric exponent[J]. J Big Data, 2022, 9(1): 1-17. DOI: 10.1186/s40537-022-00606-2.
|
| 28. |
Dubiel M, Barghouti Y, Kudryavtseva K, et al. Author correction: on-device query intent prediction with lightweight LLMs to support ubiquitous conversations[J/OL]. Sci Rep, 2024, 14(1): 16062[2024-07-11]. https://pubmed.ncbi.nlm.nih.gov/38992104/. DOI: 10.1038/s41598-024-66714-6.
|
| 29. |
Chen X, Xue Y, Wu X, et al. Deep learning-based system for disease screening and pathologic region detection from optical coherence tomography images[J/OL]. Transl Vis Sci Technol, 2023, 12(1): 29[2023-01-03]. https://pubmed.ncbi.nlm.nih.gov/36716039/. DOI: 10.1167/tvst.12.1.29.
|
| 30. |
Rahul M, Gupta M, Kumar R, et al. A deep learning based critical analysis of skin lesion classification[C]//2024 International Conference on Advances in Modern Age Technologies for Health and Engineering Science (AMATHE), IEEE, 2024: 1-5.
|
| 31. |
Allmark P. Should research samples reflect the diversity of the population?[J]. J Med Ethics, 2004, 30(2): 185-189. DOI: 10.1136/jme.2003.004374.
|
| 32. |
Kaur M, Singh D. Multi-modality medical image fusion technique using multi-objective differential evolution based deep neural networks[J]. J Ambient Intell Humaniz Comput, 2021, 12(2): 2483-2493. DOI: 10.1007/S12652-020-02386-0.
|