| 1. |
Xu H, Chen M. Immune response in retinal degenerative diseases-time to rethink?[J/OL]. Prog Neurobiol, 2022, 219: 102350[2022-09-06]. https://pubmed.ncbi.nlm.nih.gov/36075351/. DOI: 10.1016/j.pneurobio.2022.102350.
|
| 2. |
Pan D, Zhang X, Jin K, et al. CRX haploinsufficiency compromises photoreceptor precursor translocation and differentiation in human retinal organoids[J/OL]. Stem Cell Res Ther, 2023, 14(1): 346[2023-12-05]. https://pubmed.ncbi.nlm.nih.gov/38049871/. DOI: 10.1186/s13287-023-03590-3.
|
| 3. |
Kuwahara A, Nakano T, Eiraku M. Generation of a three-dimensional retinal tissue from self-organizing human ESC culture[J]. Methods Mol Biol, 2017, 1597: 17-29. DOI: 10.1007/978-1-4939-6949-4_2.
|
| 4. |
Eiraku M, Takata N, Ishibashi H, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture[J]. Nature, 2011, 472(7341): 51-56. DOI: 10.1038/nature09941.
|
| 5. |
Hasegawa Y, Takata N, Okuda S, et al. Emergence of dorsal-ventral polarity in ESC-derived retinal tissue[J]. Development, 2016, 143(21): 3895-906. DOI: 10.1242/dev.134601.
|
| 6. |
Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESC and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5): 519-532. DOI: 10.1016/j.stem.2008.09.002.
|
| 7. |
Nakano T, Ando S, Takata N, et al. Self-formation of optic cups and storable stratified neural retina from human ESC[J]. Cell Stem Cell, 2012, 10(6): 771-785. DOI: 10.1016/j.stem.2012.05.009.
|
| 8. |
Zhong X, Gutierrez C, Xue T, et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSC[J/OL]. Nat Commun, 2014, 5: 4047[2014-06-10]. https://pubmed.ncbi.nlm.nih.gov/24915161/. DOI: 10.1038/ncomms5047.
|
| 9. |
Li G, Xie B, He L, et al. Generation of retinal organoids with mature rods and cones from urine-derived human induced pluripotent stem cells[J/OL]. Stem Cells Int, 2018, 2018: 4968658[2018-06-13]. https://pubmed.ncbi.nlm.nih.gov/30008752/. DOI: 10.1155/2018/4968658.
|
| 10. |
Luo Z, Zhong X, Li K, et al. An optimized system for effective derivation of three-dimensional retinal tissue via wnt signaling regulation[J]. Stem Cells, 2018, 36(11): 1709-1722. DOI: 10.1002/stem.2890.
|
| 11. |
Reichman S, Slembrouck A, Gagliardi G, et al. Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in xeno-free and feeder-free conditions[J]. Stem Cells, 2017, 35(5): 1176-1188. DOI: 10.1002/stem.2586.
|
| 12. |
Slembrouck-Brec A, Rodrigues A, Rabesandratana O, et al. Reprogramming of adult retinal Müller glial cells into human-induced pluripotent stem cells as an efficient source of retinal cells[J/OL]. Stem Cells Int, 2019, 2019: 7858796[2019-07-15]. https://pubmed.ncbi.nlm.nih.gov/31396286/. DOI: 10.1155/2019/7858796.
|
| 13. |
Méjécase C, Zhou Y, Owen N, et al. Dominant RDH12-retinitis pigmentosa impairs photoreceptor development and implicates cone involvement in retinal organoids[J/OL]. Front Cell Dev Biol, 2025, 13: 1511066[2025-04-29]. https://pubmed.ncbi.nlm.nih.gov/40365019/. DOI: 10.3389/fcell.2025.1511066.
|
| 14. |
Navinés-Ferrer A, Pomares E. Endoplasmic reticulum stress and rhodopsin accumulation in an organoid model of retinitis pigmentosa carrying a RHO pathogenic variant[J/OL]. Stem Cell Res Ther, 2025, 16(1): 71[2025-02-14]. https://pubmed.ncbi.nlm.nih.gov/39948682/. DOI: 10.1186/s13287-025-04199-4.
|
| 15. |
Deng WL, Gao ML, Lei XL, et al. Gene correction reverses ciliopathy and photoreceptor loss in iPSC-derived retinal organoids from retinitis pigmentosa patients[J]. Stem Cell Reports, 2018, 10(4): 1267-1281. DOI: 10.1016/j.stemcr.2018.02.003.
|
| 16. |
Boon N, Lu X, Andriessen CA, et al. Characterization and AAV-mediated CRB gene augmentation in human-derived CRB1(KO) and CRB1(KO)CRB2(+/-) retinal organoids[J/OL]. Mol Ther Methods Clin Dev, 2023, 31: 101128[2023-10-10]. https://pubmed.ncbi.nlm.nih.gov/37886604/. DOI: 10.1016/j.omtm.2023.101128.
|
| 17. |
Boon N, Lu X, Andriessen CA, et al. AAV-mediated gene augmentation therapy of CRB1 patient-derived retinal organoids restores the histological and transcriptional retinal phenotype[J]. Stem Cell Reports, 2023, 18(5): 1123-1137. DOI: 10.1016/j.stemcr.2023.03.014.
|
| 18. |
Kanber D, Woestefeld J, D?pper H, et al. RB1-negative retinal organoids display proliferation of cone photoreceptors and loss of retinal differentiation[J/OL]. Cancers (Basel), 2022, 14(9): 2166[2022-04-26]. https://pubmed.ncbi.nlm.nih.gov/35565295/. DOI: 10.3390/cancers14092166.
|
| 19. |
Rozanska A, Cerna-Chavez R, Queen R, et al. pRB-depleted pluripotent stem cell retinal organoids recapitulate cell state transitions of retinoblastoma development and suggest an important role for pRB in retinal cell differentiation[J]. Stem Cells Transl Med, 2022, 11(4): 415-433. DOI: 10.1093/stcltm/szac008.
|
| 20. |
Liu H, Zhang Y, Zhang YY, et al. Human embryonic stem cell-derived organoid retinoblastoma reveals a cancerous origin[J]. Proc Natl Acad Sci USA, 2020, 117(52): 33628-33638. DOI: 10.1073/pnas.2011780117.
|
| 21. |
Chirco KR, Chew S, Moore AT, et al. Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model[J]. Stem Cell Reports, 2021, 16(11): 2690-2702. DOI: 10.1016/j.stemcr.2021.09.007.
|
| 22. |
Parfitt DA, Lane A, Ramsden CM, et al. Identification and correction of mechanisms underlying inherited blindness in human iPSC-derived optic cups[J]. Cell Stem Cell, 2016, 18(6): 769-781. DOI: 10.1016/j.stem.2016.03.021.
|
| 23. |
Leung A, Sacristan-Reviriego A, Perdig?o PRL, et al. Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amauROis[J]. Stem Cell Reports, 2022, 17(10): 2187-2202. DOI: 10.1016/j.stemcr.2022.08.005.
|
| 24. |
Lukovic D, Artero Castro A, Delgado AB, et al. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa[J/OL]. Sci Rep, 2015, 5: 12910[2015-08-11]. https://pubmed.ncbi.nlm.nih.gov/26263531/. DOI: 10.1038/srep12910.
|
| 25. |
Lane A, Jovanovic K, Shortall C, et al. Modeling and rescue of RP2 retinitis pigmentosa using iPSC-derived retinal organoids[J]. Stem Cell Reports, 2020, 15(1): 67-79. DOI: 10.1016/j.stemcr.2020.05.007.
|
| 26. |
Sladen PE, Naeem A, Adefila-Ideozu T, et al. AAV-RPGR gene therapy rescues opsin mislocalisation in a human retinal organoid model of RPGR-associated X-linked retinitis pigmentosa[J/OL]. Int J Mol Sci, 2024, 25(3): 1839[2024-02-02]. https://pubmed.ncbi.nlm.nih.gov/38339118/. DOI: 10.3390/ijms25031839.
|
| 27. |
Georgiou M, Yang C, Atkinson R, et al. Activation of autophagy reverses progressive and deleterious protein aggregation in PRPF31 patient-induced pluripotent stem cell-derived retinal pigment epithelium cells[J/OL]. Clin Transl Med, 2022, 12(3): e759[2022-03-01]. https://pubmed.ncbi.nlm.nih.gov/35297555/. DOI: 10.1002/ctm2.759.
|
| 28. |
Norrie JL, Nityanandam A, Lai K, et al. Retinoblastoma from human stem cell-derived retinal organoids[J/OL]. Nat Commun, 2021, 12(1): 4535[2021-07-27]. https://pubmed.ncbi.nlm.nih.gov/34315877/. DOI: 10.1038/s41467-021-24781-7.
|
| 29. |
Zhang P, Xu Z. The advancements in precision medicine for Leber congenital amauROis: breakthroughs from genetic diagnosis to therapy[J]. Surv Ophthalmol, 2025, 70(6): 1205-1219. DOI: 10.1016/j.survophthal.2025.04.005.
|
| 30. |
Sacristan-Reviriego A, Bellingham J, Prodromou C, et al. The integrity and organization of the human AIPL1 functional domains is critical for its role as a HSP90-dependent co-chaperone for rod PDE6[J]. Hum Mol Genet, 2017, 26(22): 4465-4480. DOI: 10.1093/hmg/ddx334.
|
| 31. |
Srimongkol A, Laosillapacharoen N, Saengwimol D, et al. Sunitinib efficacy with minimal toxicity in patient-derived retinoblastoma organoids[J/OL]. J Exp Clin Cancer Res, 2023, 42(1): 39[2023-02-01]. https://pubmed.ncbi.nlm.nih.gov/36726110/. DOI: 10.1186/s13046-023-02608-1.
|
| 32. |
Corral-Serrano JC, Sladen PE, Ottaviani D, et al. Eupatilin improves cilia defects in human CEP290 ciliopathy models[J/OL]. Cells, 2023, 12(12): 1575[2023-06-07]. https://pubmed.ncbi.nlm.nih.gov/37371046/. DOI: 10.3390/cells12121575.
|
| 33. |
Zhang Z, Xu Z, Yuan F, et al. Retinal organoid technology: where are we now?[J/OL]. Int J Mol Sci, 2021, 22(19): 10244[2021-09-23]. https://pubmed.ncbi.nlm.nih.gov/34638582/. DOI: 10.3390/ijms221910244.
|
| 34. |
Inagaki S, Nakamura S, Kuse Y, et al. Establishment of vascularized human retinal organoids from induced pluripotent stem cells[J/OL]. Stem Cells, 2025, 43(3): sxae093[2025-04-10]. https://pubmed.ncbi.nlm.nih.gov/40037696/. DOI: 10.1093/stmcls/sxae093.
|
| 35. |
Taylor J, Sellin J, Kuerschner L, et al. Generation of immune cell containing adipose organoids for in vitro analysis of immune metabolism[J/OL]. Sci Rep, 2020, 10(1): 21104[2020-12-03]. https://pubmed.ncbi.nlm.nih.gov/33273595/. DOI: 10.1038/s41598-020-78015-9.
|
| 36. |
Xu J, Yu SJ, Jin ZB. Assembling retinal organoids with microglia[J]. J Vis Exp, 2024, 209: 1-7. DOI: 10.3791/67016.
|
| 37. |
McLelland BT, Lin B, Mathur A, et al. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats[J]. Invest Ophthalmol Vis Sci, 2018, 59(6): 2586-2603. DOI: 10.1167/iovs.17-23646.
|
| 38. |
Hirami Y, Mandai M, Sugita S, et al. Safety and stable survival of stem-cell-derived retinal organoid for 2 years in patients with retinitis pigmentosa[J]. Cell Stem Cell, 2023, 30(12): 1585-1596. DOI: 10.1016/j.stem.2023.11.004.
|