- 1. The Second Clinical Medical College of Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
- 2. Department of Ophthalmology, The Second People's Hospital Affiliated to Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China;
Diabetic retinopathy (DR) is a major microvascular complication of diabetes and the leading cause of blindness in the working-age population. Diabetic choroidopathy (DC) often precedes clinically detectable retinal changes and participates in the onset and progression of DR. Given the scarcity of specific therapies for DC, it is necessary to actively explore the impact of existing DR treatments on choroidal lesions. Studies indicate that panretinal photocoagulation, anti-vascular endothelial growth factor drugs, corticosteroids, hypoglycemic agents, traditional Chinese medicine therapies, and integrated Chinese-Western medicine can all affect choroidal thickness, blood perfusion, and microcirculation through different mechanisms; however, the effects of interventions such as pars plana vitrectomy and cataract surgery on the choroid are more complex. Future research should focus on establishing a multi-parameter evaluation system for the choroid, conducting multi-center large-scale studies to improve the level of evidence-based medicine, and deeply investigating the mechanisms of traditional Chinese medicine to promote the establishment of integrated Chinese-Western medicine diagnosis and treatment models, thereby providing earlier and more precise intervention strategies for patients with DR and DC, and ultimately reducing the risk of blindness.
Copyright ? the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
| 1. | Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155. DOI: 10.1016/S2213-8587(16)30052-3. |
| 2. | 中華醫學會眼科學分會眼底病學組, 中國醫師協會眼科醫師分會眼底病學組. 我國糖尿病視網膜病變臨床診療指南(2022年)——基于循證醫學修訂[J]. 中華眼底病雜志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Retinal Disease Group of Ophthalmology Branch, Chinese Medical Association, Retinal Disease Group of Ophthalmology Physicians Branch, Chinese Medical Doctor Association. Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022)[J]. Chin J Ocul Fundus Dis, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018. |
| 3. | Saracco JB, Gastaud P, Ridings B, et al. Preliminary study on diabetic choroidopathy[J]. Bull Soc Ophtalmol Fr, 1982, 82(3): 451-454. |
| 4. | Danilova I, Medvedeva S, Shmakova S, et al. Pathological changes in the cellular structures of retina and choroidea in the early stages of alloxan-induced diabetes[J]. World J Diabetes, 2018, 9(12): 239-251. DOI: 10.4239/wjd.v9.i12.239. |
| 5. | Deng X, Li Z, Zeng P, et al. The association between decreased choriocapillary flow and electroretinogram impairments in patients with diabetes[J/OL]. Photodiagnosis Photodyn Ther, 2023, 42: 103547[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37003594/. DOI: 10.1016/j.pdpdt.2023.103547. |
| 6. | 惠延年. 優化整合糖尿病視網膜病變治療方案[J]. 中華眼底病雜志, 2025, 41(1): 1-6. DOI: 10.3760/cma.j.cn511434-20250102-00001.Hui YN. Optimizing integration of treatment options for diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2025, 41(1): 1-6. DOI: 10.3760/cma.j.cn511434-20250102-00001. |
| 7. | Brinks J, Van Dijk EHC, Klaassen I, et al. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease[J/OL]. Prog Retin Eye Res, 2022, 87: 100994[2021-07-17]. https://pubmed.ncbi.nlm.nih.gov/34280556/. DOI: 10.1016/j.preteyeres.2021.100994. |
| 8. | Scuderi L, Fragiotta S, Di Pippo M, et al. The role of diabetic choroidopathy in the pathogenesis and progression of diabetic retinopathy[J/OL]. Int J Mol Sci, 2023, 24(12): 10167[2023-06-15]. https://pubmed.ncbi.nlm.nih.gov/37373315/. DOI: 10.3390/ijms241210167. |
| 9. | Chen J, Wang Q, Li R, et al. The role of Keap1-Nrf2 signaling pathway during the progress and therapy of diabetic retinopathy[J/OL]. Life Sci, 2024, 338: 122386[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38159594/. DOI: 10.1016/j.lfs.2023.122386. |
| 10. | Dai X, Hui X, Xi M. Critical factors driving diabetic retinopathy pathogenesis and a promising interventional strategy[J/OL]. Biomed Pharmacother, 2025, 189: 118106[2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/40513392/. DOI: 10.1016/j.biopha.2025.118106. |
| 11. | Xie L, Lin W. The role of gut microbiota dysbiosis in the inflammatory pathogenesis of diabetic retinopathy[J/OL]. Front Immunol, 2025, 16: 1604315[2025-07-07]. https://pubmed.ncbi.nlm.nih.gov/40692792/. DOI: 10.3389/fimmu.2025.1604315. |
| 12. | Wang S, Yang H, Zheng J, et al. Recent advances and prospects of nanoparticle-based drug delivery for diabetic ocular complications[J]. Theranostics, 2025, 15(8): 3551-3570. DOI: 10.7150/thno.108691. |
| 13. | Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy[J]. Neural Regen Res, 2023, 18(5): 976-982. DOI: 10.4103/1673-5374.355743. |
| 14. | Yue T, Shi Y, Luo S, et al. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications[J/OL]. Front Immunol, 2022, 13: 1055087[2022-12-13]. https://pubmed.ncbi.nlm.nih.gov/36582230/. DOI: 10.3389/fimmu.2022.1055087. |
| 15. | Lechner J, Medina RJ, Lois N, et al. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina[J/OL]. Stem Cell Res Ther, 2022, 13(1): 388[2022-07-30]. https://pubmed.ncbi.nlm.nih.gov/35907890/. DOI: 10.1186/s13287-022-03073-x. |
| 16. | Dmuchowska DA, Sidorczuk P, Pieklarz B, et al. Quantitative assessment of choroidal parameters in patients with various types of diabetic macular oedema: a single-centre cross-sectional analysis[J/OL]. Biology, 2021, 10(8): 725[2021-07-29]. https://pubmed.ncbi.nlm.nih.gov/34439957/. DOI: 10.3390/biology10080725. |
| 17. | Raciborska A, Sidorczuk P, Konopińska J, et al. Interocular symmetry of choroidal parameters in patients with diabetic retinopathy with and without diabetic macular edema[J/OL]. J Clin Med, 2023, 13(1): 176[2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/38202183/. DOI: 10.3390/jcm13010176. |
| 18. | Hassan H, Cheema A, Tahir MA, et al. Comparison of choroidal thickness in eyes of diabetic patients with eyes of healthy individuals using optical coherence tomography in a tertiary care hospital[J]. Pak J Med Sci, 2022, 38(1): 254-260. DOI: 10.12669/pjms.38.1.4443. |
| 19. | Ra H, Kang NY, Song J, et al. Discordance in retinal and choroidal vascular densities in patients with type 2 diabetes mellitus on optical coherence tomography angiography[J/OL]. J Ophthalmol, 2021, 2021: 8871602[2021-02-09]. https://pubmed.ncbi.nlm.nih.gov/33747557/. DOI: 10.1155/2021/8871602. |
| 20. | Pinilla I, Sanchez-Cano A, Insa G, et al. Choroidal differences between spectral and swept-source domain technologies[J]. Curr Eye Res, 2021, 46(2): 239-247. DOI: 10.1080/02713683.2020.1795883. |
| 21. | Jiang J, Liu J, Yang J, et al. Optical coherence tomography evaluation of choroidal structure changes in diabetic retinopathy patients: a systematic review and meta-analysis[J/OL]. Front Med Lausanne, 2022, 9: 986209[2022-10-20]. https://pubmed.ncbi.nlm.nih.gov/36341274/. DOI: 10.3389/fmed.2022.986209. |
| 22. | Endo H, Kase S, Saito M, et al. Choroidal thickness in diabetic patients without diabetic retinopathy: a meta-analysis[J]. Am J Ophthalmol, 2020, 218: 68-77. DOI: 10.1016/j.ajo.2020.05.036. |
| 23. | Dai Y, Zhou H, Chu Z, et al. Microvascular changes in the choriocapillaris of diabetic patients without retinopathy investigated by swept-source OCT angiography[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(3): 50[2020-04-09]. https://pubmed.ncbi.nlm.nih.gov/32232345/. DOI: 10.1167/iovs.61.3.50. |
| 24. | Foo VHX, Gupta P, Nguyen QD, et al. Decrease in choroidal vascularity index of haller’s layer in diabetic eyes precedes retinopathy[J/OL]. BMJ Open Diabetes Res Care, 2020, 8(1): e001295[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32912848/. DOI: 10.1136/bmjdrc-2020-001295. |
| 25. | 王慧, 戴維, 李永蓉, 等. 應用超高速SS-OCTA定量評估DR患者的脈絡膜毛細血管血流灌注[J]. 國際眼科雜志, 2023, 23(9): 1527-1532. DOI: 10.3980/j.issn.1672-5123.2023.9.21.Wang H, Dai W, Li YR, et al. Quantitative assessment of choriocapillaris perfusion in patients with diabetic retinopathy using ultra-high-speed swept source optical coherence tomography angiography[J]. Int Eye Sci, 2023, 23(9): 1527-1532. DOI: 10.3980/j.issn.1672-5123.2023.9.21. |
| 26. | Dai Y, Zhou H, Zhang Q, et al. Quantitative assessment of choriocapillaris flow deficits in diabetic retinopathy: a swept-source optical coherence tomography angiography study[J/OL]. PLoS One, 2020, 15(12): e0243830[2020-12-11]. https://pubmed.ncbi.nlm.nih.gov/33306736/. DOI: 10.1371/journal.pone.0243830. |
| 27. | 沈念, 李舒凝, 付鵬, 等. 基于OCTA的糖尿病患者視網膜及脈絡膜血流變化分析[J]. 糖尿病新世界, 2023, 26(7): 18-22. DOI: 10.16658/j.cnki.1672-4062.2023.07.018.Shen N, Li SN, Fu P, et al. Analysis of retinal and choroidal blood flow changes in diabetic patients based on OCTA[J]. Diabetes New World, 2023, 26(7): 18-22. DOI: 10.16658/j.cnki.1672-4062.2023.07.018. |
| 28. | 沙艷會, 李爽, 王薇, 等. 關于糖尿病視網膜病變患者脈絡膜血管指數的初步研究[J]. 國際眼科雜志, 2020, 20(9): 1587-1593. DOI: 10.3980/j.issn.1672-5123.2020.9.24.Sha YH, Li S, Wang W, et al. A preliminary study of choroidal vascular index in patients with diabetic retinopathy[J]. Int Eye Sci, 2020, 20(9): 1587-1593. DOI: 10.3980/j.issn.1672-5123.2020.9.24. |
| 29. | 徐靜, 唐曉娟, 于健, 等. 糖尿病黃斑水腫患者病變程度與脈絡膜厚度的關系[J]. 眼科新進展, 2019, 39(5): 444-448. DOI: 10.13389/j.cnki.rao.2019.0102.Xu J, Tang XJ, Yu J, et al. Comparisons of choroidal thickness in relation to macular edema in type 2 diabetic patients[J]. Rec Adv Ophthalmol, 2019, 39(5): 444-448. DOI: 10.13389/j.cnki.rao.2019.0102. |
| 30. | Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002. |
| 31. | Deng X, Li Z, Zeng P, et al. The association between decreased choriocapillary flow and electroretinogram impairments in patients with diabetes[J/OL]. Photodiagnosis Photodyn Ther, 2023, 42: 103547[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37003594/. DOI: 10.1016/j.pdpdt.2023.103547. |
| 32. | Zheng G, Li J, Zhou Y, et al. Outer retina and choroid as potential imaging markers for evaluation of neural impairment in early type 2 diabetic patients[J]. Eur J Ophthalmol, 2025, 35(1): 221-231. DOI: 10.1177/11206721241258637. |
| 33. | Scuderi L, Fragiotta S, Di Pippo M, et al. The role of diabetic choroidopathy in the pathogenesis and progression of diabetic retinopathy[J/OL]. Int J Mol Sci, 2023, 24(12): 10167[2023-06-15]. https://pubmed.ncbi.nlm.nih.gov/37373315/. DOI: 10.3390/ijms241210167. |
| 34. | Amjad R, Lee CA, Farooqi HMU, et al. Choroidal thickness in different patterns of diabetic macular edema[J/OL]. J Clin Med, 2022, 11(20): 6169[2022-10-19]. https://pubmed.ncbi.nlm.nih.gov/36294492/. DOI: 10.3390/jcm11206169. |
| 35. | Loria O, Kodjikian L, Denis P, et al. Quantitative analysis of choriocapillaris alterations in swept-source optical coherence tomography angiography in diabetic patients[J]. Retina, 2021, 41(9): 1809-1818. DOI: 10.1097/IAE.0000000000003102. |
| 36. | Kim YK, An Y, Park SP. Intraocular and interocular differences in parafoveal vascular density in diabetic patients without diabetic retinopathy[J]. Retina, 2021, 41(1): 170-180. DOI: 10.1097/IAE.0000000000002781. |
| 37. | Papasavvas I, Tucker WR, Mantovani A, et al. Choroidal vasculitis as a biomarker of inflammation of the choroid. Indocyanine Green Angiography (ICGA) spearheading for diagnosis and follow-up, an imaging tutorial[J/OL]. J Ophthalmic Inflamm Infect, 2024, 14(1): 63[2024-12-04]. https://pubmed.ncbi.nlm.nih.gov/39633039/. DOI: 10.1186/s12348-024-00442-w. |
| 38. | 趙立宇, 姜茂華, 楊芳, 等. 糖尿病性視網膜病變患者常規全視網膜光凝后黃斑中心凹下脈絡膜厚度變化的薈萃分析[J]. 眼科新進展, 2022, 42(2): 136-141. DOI: 10.13389/j.cnki.rao.2022.0028.Zhao LY, Jiang MH Yang F, et al. A meta-analysis of changes in the subfoveal choroidal thickness in diabetic retinopathy patients after conventional panretinal photocoagulation[J]. Rec Adv Ophthalmol, 2022, 42(2): 136-141. DOI: 10.13389/j.cnki.rao.2022.0028. |
| 39. | Li G, Ho M, Li S, et al. comparing functional and vascular layer outcomes of laser photocoagulation versus subthreshold micropulse laser for diabetic macular edema: an OCT-angiography study[J]. Retina Phila Pa, 2023, 43(5): 823-831. DOI: 10.1097/IAE.0000000000003711. |
| 40. | 胡可可, 惠延年, 杜紅俊. 抗VEGF時代激光光凝治療糖尿病視網膜病變的應用進展[J]. 國際眼科雜志, 2023, 23(8): 1285-1289. DOI: 10.3980/j.issn.1672-5123.2023.8.09.Hu KK, Hui YN, Du HJ. Application progress of laser photocoagulation in diabetic retinopathy treatment in the era of anti-vascular endothelial growth factor agents[J]. Int Eye Sci, 2023, 23(8): 1285-1289. DOI: 10.3980/j.issn.1672-5123.2023.8.09. |
| 41. | American Diabetes Association Professional Practice Committee. 9. pharmacologic approaches to glycemic treatment: standards of care in diabetes-2025[J]. Diabetes Care, 2025, 48(1 Suppl 1): S181-206. DOI: 10.2337/dc25-S009. |
| 42. | 馮超, 徐沖, 閻靜, 等. 玻璃體內注射雷珠單抗治療重度非增生型糖尿病視網膜病變伴黃斑水腫后患者脈絡膜厚度的變化[J]. 眼科新進展, 2017, 37(4): 335-337. DOI: 10.13389/j.cnki.rao.2017.0084.Feng C, Xu C, Yan J, et al. Changes of choroidal thickness after ranibizumab treatment for non-proliferative diabetic retinopathy with macular edema[J]. Rec Adv Ophthalmol, 2017, 37(4): 335-337. DOI: 10.13389/j.cnki.rao.2017.0084. |
| 43. | Sarda V, Eymard P, Hrarat L, et al. Comparison of the effect of ranibizumab and aflibercept on changes in macular choroidal thickness in patients treated for diabetic macular edema[J/OL]. J Ophthalmol, 2020, 2020: 5708354[2020-08-11]. https://pubmed.ncbi.nlm.nih.gov/32850142/. DOI: 10.1155/2020/5708354. |
| 44. | Nourinia R, Ahmadieh H, Nekoei E, et al. Changes in central choroidal thickness after treatment of diabetic macular edema with intravitreal bevacizumab correlation with central macular thickness and best-corrected visual acuity[J]. Retina Phila Pa, 2018, 38(5): 970-975. DOI: 10.1097/IAE.0000000000001645. |
| 45. | Yang X, Cao Y, Cao X, et al. Anti‐ VEGF monotherapy versus anti‐ VEGF therapy combined with laser or intravitreal glucocorticoid therapy for diabetic macular edema: a bayesian network meta‐analysis[J]. Diabetes Obes Metab, 2025, 27(5): 2679-2689. DOI: 10.1111/dom.16270. |
| 46. | Chen C, Wang Z, Yan W, et al. Anti-VEGF combined with ocular corticosteroids therapy versus anti-VEGF monotherapy for diabetic macular edema focusing on drugs injection times and confounding factors of pseudophakic eyes: a systematic review and meta-analysis[J/OL]. Pharmacol Res, 2023, 196: 106904[2023-09-04]. https://pubmed.ncbi.nlm.nih.gov/37666311/. DOI: 10.1016/j.phrs.2023.106904. |
| 47. | 宋楚楚. 注射雷珠單抗聯合視網膜眼底激光治療對糖尿病視網膜病變患者的影響[J]. 中外醫藥研究, 2025, 4(13): 40-42. DOI: 10.19368/j.cnki.2096-1782.2024.07.083.Song CC. Influence of Ranibizumab injection combined with retinal membrane fundus laser therapy on patients with diabetic retinopathy[J]. Journal of Chinese and Foreign Medicine and Pharmacy Research, 2025, 4(13): 40-42. DOI: 10.19368/j.cnki.2096-1782.2024.07.083. |
| 48. | 趙昆, 杜偉偉. 玻璃體內注射雷珠單抗聯合激光光凝治療糖尿病視網膜病變伴黃斑水腫的臨床效果[J]. 臨床醫學工程, 2024, 31(11): 1327-1328. DOI: 10.3969/j.issn.1674-4659.2024.11.1327.Zhao K, Du WW. Clinical effect of intravitreal injection of ranibizumab combined with laser photocoagulation in treatment of diabetic retinopathy complicated with macular edema[J]. Clinical Medical & Engineering, 2024, 31(11): 1327-1328. DOI: 10.3969/j.issn.1674-4659.2024.11.1327. |
| 49. | Temel E, Ozcan G, Yanik O, et al. Choroidal structural alterations in diabetic patients in association with disease duration, HbA1c level, and presence of retinopathy[J]. Int Ophthalmol, 2022, 42(12): 3661-3672. DOI: 10.1007/s10792-022-02363-w. |
| 50. | Li YN, Liang HW, Zhang CL, et al. Ophthalmic solution of smart supramolecular peptides to capture semaphorin 4D against diabetic retinopathy[J/OL]. Adv Sci Weinh Baden-Wurtt Ger, 2023, 10(3): e2203351[2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/36437109/. DOI: 10.1002/advs.202203351. |
| 51. | 陳銘豪, 劉沛雨, 王旋, 等. 糖尿病視網膜病變的藥物治療研究進展[J]. 上海交通大學學報(醫學版), 2024, 44(7): 822-829. DOI: 10.3969/j.issn.1674-8115.2024.07.003.Chen MH, Liu PY, Wang X, et al. Advances in drug therapy of diabetic retinopathy[J]. Journal of Shanghai Jiaotong University(Medical Science), 2024, 44(7): 822-829. DOI: 10.3969/j.issn.1674-8115.2024.07.003. |
| 52. | Liu B, Ma G, Hou J, et al. Choroidal structural changes of posterior subtenon triamcinolone acetonide injection in eyes with refractory diabetic macular edema[J/OL]. J Ophthalmol, 2022, 2022: 6882607[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35237449/. DOI: 10.1155/2022/6882607. |
| 53. | Kocami? ?, Temel E, ?zcan G, et al. Choroidal vascularity index after a single dose of intravitreal dexamethasone implant in patients with refractory diabetic macular oedema[J/OL]. Photodiagnosis Photodyn Ther, 2022, 39: 102996[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35237449/. DOI: 10.1016/j.pdpdt.2022.102996. |
| 54. | Moon KY, Choi SY, Song JH. Changes in subfoveal choroidal thickness after intravitreal dexamethasone implant therapy for diabetic macular edema[J]. Retina Phila Pa, 2021, 41(6): 1283-1292. DOI: 10.1097/IAE.0000000000003029. |
| 55. | Yamamoto K, Iwase T, Ushida H, et al. Changes in retinochoroidal thickness after vitrectomy for proliferative diabetic retinopathy[J/OL]. Investig Opthalmology Vis Sci, 2015, 56(5): 3034[2015-05-01]. https://pubmed.ncbi.nlm.nih.gov/26024087/. DOI: 10.1167/iovs.14-15981. |
| 56. | 紀風濤, 王慧, 魏科, 等. SS-OCTA評估增殖性糖尿病視網膜病變玻璃體切除術后黃斑微血管的變化[J]. 國際眼科雜志, 2023, 23(5): 747-753. DOI: 10.3980/j.issn.1672-5123.2023.5.06.Ji FT, Wang H, Wei K, et al. Evaluation of macular microvasculature alterations in patients with proliferative diabetic retinopathy after vitrectomy by swept-source optical coherence tomography angiography[J]. Int Eye Sci, 2023, 23(5): 747-753. DOI: 10.3980/j.issn.1672-5123.2023.5.06. |
| 57. | Nicolini N, Tombolini B, Barresi C, et al. Assessment of diabetic choroidopathy using ultra-widefield optical coherence tomography[J/OL]. Transl Vis Sci Technol, 2022, 11(3): 35[2022-03-02]. https://pubmed.ncbi.nlm.nih.gov/35353150/. DOI: 10.1167/tvst.11.3.35. |
| 58. | Wang X, Li R, Chen J, et al. Choroidal vascularity index (CVI)-net-based automatic assessment of diabetic retinopathy severity using CVI in optical coherence tomography images[J/OL]. J Biophotonics, 2023, 16(6): e202200370[2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/36633529/. DOI: 10.1002/jbio.202200370. |
| 59. | Li Z, Yang F, Deng X, et al. Association between choroidal thickness and diabetic macular edema: a meta-analysis[J]. Acta Diabetol, 2024, 61(8): 951-961. DOI: 10.1007/s00592-024-02306-0. |
| 60. | Altun A, Hacimustafaoglu AM. Effect of dexamethasone implant on subfoveal choroidal thickness in early period in vitrectomized eyes with diabetic macular edema[J/OL]. J Ophthalmol, 2021, 2021: 8840689[2021-04-12]. https://pubmed.ncbi.nlm.nih.gov/33936810/. DOI: 10.1155/2021/8840689. |
| 61. | Matsathit U, Komolkriengkrai M, Khimmaktong W. Glabridin and gymnemic acid alleviates choroid structural change and choriocapillaris impairment in diabetic rat’s eyes[J/OL]. World J Diabetes, 2025, 16(3): 97336[2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/40093291/. DOI: 10.4239/wjd.v16.i3.97336. |
| 62. | Bolac R, Bas S, Ozkan EMA, et al. Evaluation of the effect of sodium-glucose cotransporter-2 inhibitor treatment on choroidal vascular parameters in patients with type 2 diabetes mellitus[J/OL]. Photodiagnosis Photodyn Ther, 2023, 44: 103804[2023-09-14]. https://pubmed.ncbi.nlm.nih.gov/37714281/. DOI: 10.1016/j.pdpdt.2023.103804. |
| 63. | Oelze M, Kr?ller-Sch?n S, Welschof P, et al. The sodium-glucose Co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity[J/OL]. PLoS One, 2014, 9(11): e112394[2014-11-17]. https://pubmed.ncbi.nlm.nih.gov/25402275/. DOI: 10.1371/journal.pone.0112394. |
| 64. | May M, Framke T, Junker B, et al. How and why SGLT2 inhibitors should be explored as potential treatment option in diabetic retinopathy: clinical concept and methodology[J/OL]. Ther Adv Endocrinol Metab, 2019, 10: 2042018819891886[2019-12-11]. https://pubmed.ncbi.nlm.nih.gov/31853361/. DOI: 10.1177/2042018819891886. |
| 65. | Xu C, Meng Z, Lin W, et al. Semaglutide ameliorates retinal vascular permeability destruction in diabetic retinopathy by AnxA2-mediated MMP-9 activation and basement membrane remodeling[J/OL]. Biomed Pharmacother Biomedecine Pharmacother, 2025, 190: 118409[2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/40749340/. DOI: 10.1016/j.biopha.2025.118409. |
| 66. | Yang X, Wu S, Feng Z, et al. Combination therapy with semaglutide and rosiglitazone as a synergistic treatment for diabetic retinopathy in rodent animals[J/OL]. Life Sci, 2021, 269: 119013[2021-04-15]. https://pubmed.ncbi.nlm.nih.gov/33417950/. DOI: 10.1016/j.lfs.2020.119013. |
| 67. | 桑智慧, 李慧紅, 周麗娟. 中藥治療糖尿病視網膜病變的療效及機制研究進展[J]. 中國藥房, 2023, 34(12): 1532-1536. DOI: 10.6039/j.issn.1001-0408.2023.12.24.Sang ZH, Li HH, Zhou LJ. Research progress on the curative effect and mechanism of traditional Chinese medicine in the treatment of diabetic retinopathy[J]. China Pharmacy, 2023, 34(12): 1532-1536. DOI: 10.6039/j.issn.1001-0408.2023.12.24. |
| 68. | 陳子揚, 謝立科, 郝曉鳳. 中醫藥治療糖尿病視網膜病變的研究進展[J]. 中國中醫眼科雜志, 2023, 33(1): 84-87. DOI: 10.13444/j.cnki.zgzyykzz.2023.01.021.Chen ZY, Xie LK, Hao XF. Research progress of Traditional Chinese Medicine in treatment of diabetic retinopathy[J]. Chinese Journal of Chinese Ophthalmology, 2023, 33(1): 84-87. DOI: 10.13444/j.cnki.zgzyykzz.2023.01.021. |
| 69. | 范明峰. 血府逐瘀湯治療氣滯血瘀型非增殖性糖尿病視網膜病變患者的臨床效果分析[J]. 大醫生, 2025, 10(6): 90-92. DOI: 10.3969/j.issn.2096-2665.2025.06.028.Fan MF. Analysis of the clinical effect of Xuefu Zhuyu Decoction in treating patients with non-proliferative diabetic retinopathy of Qi stagnation and Blood Stasis type[J]. Doctor, 2025, 10(6): 90-92. DOI: 10.3969/j.issn.2096-2665.2025.06.028. |
| 70. | 林潤平. 復明片和和血明目片對糖尿病性視網膜病變脈絡膜厚度及視力的影響[J]. 海峽藥學, 2020, 32(7): 161-163. DOI: 10.3969/j.issn.1006-3765.2020.07.068.Lin RP. The influence of Fuming Tablets and Hexue Mingmu Tablets on choroidal thickness and visual acuity in diabetic retinopathy[J]. Strait Pharmaceutical Journal, 2020, 32(7): 161-163. DOI: 10.3969/j.issn.1006-3765.2020.07.068. |
| 71. | 張永斌, 楊金崗. 通絡明目膠囊對糖尿病視網膜病變患者眼底微循環及脈絡膜厚度的影響[J]. 大醫生, 2025, 10(3): 89-92. DOI: 10.3969/j.issn.2096-2665.2025.03.029.Zhang YB, Yang JG. The influence of Tongluo Mingmu Capsules on the microcirculation of the fundus and choroidal thickness in patients with diabetic retinopathy[J]. Doctor, 2025, 10(3): 89-92. DOI: 10.3969/j.issn.2096-2665.2025.03.029. |
| 72. | 王莎莎, Jorge A. Trujillo Perdomo, 薛敏, 等. 和血明目片聯合全視網膜激光光凝術對糖尿病視網膜病變患者視力狀況、血液流變學及脈絡膜厚度的影響[J]. 現代生物醫學進展, 2022, 22(17): 3343-3346. DOI: 10.13241/j.cnki.pmb.2022.17.028.Wang SS, Jorge A. Trujillo Perdomo, Xue M, et al. Effects of hexuemingmu tablet combined with whole retina laser photocoagulation on visual acuity, hemorheology and choroidal thickness in patients with diabetes retinopathy[J]. Progress in Modern Biomedicine, 2022, 22(17): 3343-3346. DOI: 10.13241/j.cnki.pmb.2022.17.028. |
| 73. | 安鑫, 焦劍, 魏文斌, 等. 復方樟柳堿聯合視網膜激光光凝治療重度非增殖性糖尿病視網膜病變[J]. 國際眼科雜志, 2024, 24(5): 790-794. DOI: 10.3980/j.issn.1672-5123.2024.5.24.An X, Jiao J, Wei WB, et al. Compound anisodine combined with retinal laser photocoagulation for the treatment of severe non-proliferative diabetic retinopathy[J]. Int Eye Sci, 2024, 24(5): 790-794. DOI: 10.3980/j.issn.1672-5123.2024.5.24. |
| 74. | 閆晨曦, 姚克. 中國糖尿病患者白內障圍手術期管理策略專家共識(2020年)解讀[J]. 海南醫學, 2020, 31(19): 2449-2451. DOI: 10.3760/cma.j.cn112142-20191106-00559.Yan CX, Yao K. Expert consensus on perioperative management strategies for cataract in Chinese diabetic patients (2020)[J]. Hainan Medical Journal, 2020, 31(19): 2449-2451. DOI: 10.3760/cma.j.cn112142-20191106-00559. |
| 75. | Yip VC, Laude A, Tan KA, et al. A longitudinal study of choroidal changes following cataract surgery in patients with diabetes[J]. Diab Vasc Dis Res, 2019, 16(4): 369-377. DOI: 10.1177/1479164119841536. |
| 76. | 王造文, 王爾茜, 陳有信. 年齡相關性白內障合并2型糖尿病患者超聲乳化術后黃斑區脈絡膜毛細血管血流密度變化及相關性研究[J]. 眼科新進展, 2020, 40(10): 963-966. DOI: 10.13389/j.cnki.rao.2020.0216.Wang ZW, Wang EX, Chen YX. Choriocapillary flow changes after phacoemulsification surgery in patients with type 2 diabetes and its related factors[J]. Rec Adv Ophthalmol, 2020, 40(10): 963-966. DOI: 10.13389/j.cnki.rao.2020.0216. |
- 1. Tan GS, Cheung N, Simó R, et al. Diabetic macular oedema[J]. Lancet Diabetes Endocrinol, 2017, 5(2): 143-155. DOI: 10.1016/S2213-8587(16)30052-3.
- 2. 中華醫學會眼科學分會眼底病學組, 中國醫師協會眼科醫師分會眼底病學組. 我國糖尿病視網膜病變臨床診療指南(2022年)——基于循證醫學修訂[J]. 中華眼底病雜志, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.Retinal Disease Group of Ophthalmology Branch, Chinese Medical Association, Retinal Disease Group of Ophthalmology Physicians Branch, Chinese Medical Doctor Association. Evidence-based guidelines for diagnosis and treatment of diabetic retinopathy in China (2022)[J]. Chin J Ocul Fundus Dis, 2023, 39(2): 99-124. DOI: 10.3760/cma.j.cn511434-20230110-00018.
- 3. Saracco JB, Gastaud P, Ridings B, et al. Preliminary study on diabetic choroidopathy[J]. Bull Soc Ophtalmol Fr, 1982, 82(3): 451-454.
- 4. Danilova I, Medvedeva S, Shmakova S, et al. Pathological changes in the cellular structures of retina and choroidea in the early stages of alloxan-induced diabetes[J]. World J Diabetes, 2018, 9(12): 239-251. DOI: 10.4239/wjd.v9.i12.239.
- 5. Deng X, Li Z, Zeng P, et al. The association between decreased choriocapillary flow and electroretinogram impairments in patients with diabetes[J/OL]. Photodiagnosis Photodyn Ther, 2023, 42: 103547[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37003594/. DOI: 10.1016/j.pdpdt.2023.103547.
- 6. 惠延年. 優化整合糖尿病視網膜病變治療方案[J]. 中華眼底病雜志, 2025, 41(1): 1-6. DOI: 10.3760/cma.j.cn511434-20250102-00001.Hui YN. Optimizing integration of treatment options for diabetic retinopathy[J]. Chin J Ocul Fundus Dis, 2025, 41(1): 1-6. DOI: 10.3760/cma.j.cn511434-20250102-00001.
- 7. Brinks J, Van Dijk EHC, Klaassen I, et al. Exploring the choroidal vascular labyrinth and its molecular and structural roles in health and disease[J/OL]. Prog Retin Eye Res, 2022, 87: 100994[2021-07-17]. https://pubmed.ncbi.nlm.nih.gov/34280556/. DOI: 10.1016/j.preteyeres.2021.100994.
- 8. Scuderi L, Fragiotta S, Di Pippo M, et al. The role of diabetic choroidopathy in the pathogenesis and progression of diabetic retinopathy[J/OL]. Int J Mol Sci, 2023, 24(12): 10167[2023-06-15]. https://pubmed.ncbi.nlm.nih.gov/37373315/. DOI: 10.3390/ijms241210167.
- 9. Chen J, Wang Q, Li R, et al. The role of Keap1-Nrf2 signaling pathway during the progress and therapy of diabetic retinopathy[J/OL]. Life Sci, 2024, 338: 122386[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38159594/. DOI: 10.1016/j.lfs.2023.122386.
- 10. Dai X, Hui X, Xi M. Critical factors driving diabetic retinopathy pathogenesis and a promising interventional strategy[J/OL]. Biomed Pharmacother, 2025, 189: 118106[2025-06-12]. https://pubmed.ncbi.nlm.nih.gov/40513392/. DOI: 10.1016/j.biopha.2025.118106.
- 11. Xie L, Lin W. The role of gut microbiota dysbiosis in the inflammatory pathogenesis of diabetic retinopathy[J/OL]. Front Immunol, 2025, 16: 1604315[2025-07-07]. https://pubmed.ncbi.nlm.nih.gov/40692792/. DOI: 10.3389/fimmu.2025.1604315.
- 12. Wang S, Yang H, Zheng J, et al. Recent advances and prospects of nanoparticle-based drug delivery for diabetic ocular complications[J]. Theranostics, 2025, 15(8): 3551-3570. DOI: 10.7150/thno.108691.
- 13. Tang L, Xu GT, Zhang JF. Inflammation in diabetic retinopathy: possible roles in pathogenesis and potential implications for therapy[J]. Neural Regen Res, 2023, 18(5): 976-982. DOI: 10.4103/1673-5374.355743.
- 14. Yue T, Shi Y, Luo S, et al. The role of inflammation in immune system of diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications[J/OL]. Front Immunol, 2022, 13: 1055087[2022-12-13]. https://pubmed.ncbi.nlm.nih.gov/36582230/. DOI: 10.3389/fimmu.2022.1055087.
- 15. Lechner J, Medina RJ, Lois N, et al. Advances in cell therapies using stem cells/progenitors as a novel approach for neurovascular repair of the diabetic retina[J/OL]. Stem Cell Res Ther, 2022, 13(1): 388[2022-07-30]. https://pubmed.ncbi.nlm.nih.gov/35907890/. DOI: 10.1186/s13287-022-03073-x.
- 16. Dmuchowska DA, Sidorczuk P, Pieklarz B, et al. Quantitative assessment of choroidal parameters in patients with various types of diabetic macular oedema: a single-centre cross-sectional analysis[J/OL]. Biology, 2021, 10(8): 725[2021-07-29]. https://pubmed.ncbi.nlm.nih.gov/34439957/. DOI: 10.3390/biology10080725.
- 17. Raciborska A, Sidorczuk P, Konopińska J, et al. Interocular symmetry of choroidal parameters in patients with diabetic retinopathy with and without diabetic macular edema[J/OL]. J Clin Med, 2023, 13(1): 176[2023-12-28]. https://pubmed.ncbi.nlm.nih.gov/38202183/. DOI: 10.3390/jcm13010176.
- 18. Hassan H, Cheema A, Tahir MA, et al. Comparison of choroidal thickness in eyes of diabetic patients with eyes of healthy individuals using optical coherence tomography in a tertiary care hospital[J]. Pak J Med Sci, 2022, 38(1): 254-260. DOI: 10.12669/pjms.38.1.4443.
- 19. Ra H, Kang NY, Song J, et al. Discordance in retinal and choroidal vascular densities in patients with type 2 diabetes mellitus on optical coherence tomography angiography[J/OL]. J Ophthalmol, 2021, 2021: 8871602[2021-02-09]. https://pubmed.ncbi.nlm.nih.gov/33747557/. DOI: 10.1155/2021/8871602.
- 20. Pinilla I, Sanchez-Cano A, Insa G, et al. Choroidal differences between spectral and swept-source domain technologies[J]. Curr Eye Res, 2021, 46(2): 239-247. DOI: 10.1080/02713683.2020.1795883.
- 21. Jiang J, Liu J, Yang J, et al. Optical coherence tomography evaluation of choroidal structure changes in diabetic retinopathy patients: a systematic review and meta-analysis[J/OL]. Front Med Lausanne, 2022, 9: 986209[2022-10-20]. https://pubmed.ncbi.nlm.nih.gov/36341274/. DOI: 10.3389/fmed.2022.986209.
- 22. Endo H, Kase S, Saito M, et al. Choroidal thickness in diabetic patients without diabetic retinopathy: a meta-analysis[J]. Am J Ophthalmol, 2020, 218: 68-77. DOI: 10.1016/j.ajo.2020.05.036.
- 23. Dai Y, Zhou H, Chu Z, et al. Microvascular changes in the choriocapillaris of diabetic patients without retinopathy investigated by swept-source OCT angiography[J/OL]. Invest Ophthalmol Vis Sci, 2020, 61(3): 50[2020-04-09]. https://pubmed.ncbi.nlm.nih.gov/32232345/. DOI: 10.1167/iovs.61.3.50.
- 24. Foo VHX, Gupta P, Nguyen QD, et al. Decrease in choroidal vascularity index of haller’s layer in diabetic eyes precedes retinopathy[J/OL]. BMJ Open Diabetes Res Care, 2020, 8(1): e001295[2020-09-01]. https://pubmed.ncbi.nlm.nih.gov/32912848/. DOI: 10.1136/bmjdrc-2020-001295.
- 25. 王慧, 戴維, 李永蓉, 等. 應用超高速SS-OCTA定量評估DR患者的脈絡膜毛細血管血流灌注[J]. 國際眼科雜志, 2023, 23(9): 1527-1532. DOI: 10.3980/j.issn.1672-5123.2023.9.21.Wang H, Dai W, Li YR, et al. Quantitative assessment of choriocapillaris perfusion in patients with diabetic retinopathy using ultra-high-speed swept source optical coherence tomography angiography[J]. Int Eye Sci, 2023, 23(9): 1527-1532. DOI: 10.3980/j.issn.1672-5123.2023.9.21.
- 26. Dai Y, Zhou H, Zhang Q, et al. Quantitative assessment of choriocapillaris flow deficits in diabetic retinopathy: a swept-source optical coherence tomography angiography study[J/OL]. PLoS One, 2020, 15(12): e0243830[2020-12-11]. https://pubmed.ncbi.nlm.nih.gov/33306736/. DOI: 10.1371/journal.pone.0243830.
- 27. 沈念, 李舒凝, 付鵬, 等. 基于OCTA的糖尿病患者視網膜及脈絡膜血流變化分析[J]. 糖尿病新世界, 2023, 26(7): 18-22. DOI: 10.16658/j.cnki.1672-4062.2023.07.018.Shen N, Li SN, Fu P, et al. Analysis of retinal and choroidal blood flow changes in diabetic patients based on OCTA[J]. Diabetes New World, 2023, 26(7): 18-22. DOI: 10.16658/j.cnki.1672-4062.2023.07.018.
- 28. 沙艷會, 李爽, 王薇, 等. 關于糖尿病視網膜病變患者脈絡膜血管指數的初步研究[J]. 國際眼科雜志, 2020, 20(9): 1587-1593. DOI: 10.3980/j.issn.1672-5123.2020.9.24.Sha YH, Li S, Wang W, et al. A preliminary study of choroidal vascular index in patients with diabetic retinopathy[J]. Int Eye Sci, 2020, 20(9): 1587-1593. DOI: 10.3980/j.issn.1672-5123.2020.9.24.
- 29. 徐靜, 唐曉娟, 于健, 等. 糖尿病黃斑水腫患者病變程度與脈絡膜厚度的關系[J]. 眼科新進展, 2019, 39(5): 444-448. DOI: 10.13389/j.cnki.rao.2019.0102.Xu J, Tang XJ, Yu J, et al. Comparisons of choroidal thickness in relation to macular edema in type 2 diabetic patients[J]. Rec Adv Ophthalmol, 2019, 39(5): 444-448. DOI: 10.13389/j.cnki.rao.2019.0102.
- 30. Nickla DL, Wallman J. The multifunctional choroid[J]. Prog Retin Eye Res, 2010, 29(2): 144-168. DOI: 10.1016/j.preteyeres.2009.12.002.
- 31. Deng X, Li Z, Zeng P, et al. The association between decreased choriocapillary flow and electroretinogram impairments in patients with diabetes[J/OL]. Photodiagnosis Photodyn Ther, 2023, 42: 103547[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/37003594/. DOI: 10.1016/j.pdpdt.2023.103547.
- 32. Zheng G, Li J, Zhou Y, et al. Outer retina and choroid as potential imaging markers for evaluation of neural impairment in early type 2 diabetic patients[J]. Eur J Ophthalmol, 2025, 35(1): 221-231. DOI: 10.1177/11206721241258637.
- 33. Scuderi L, Fragiotta S, Di Pippo M, et al. The role of diabetic choroidopathy in the pathogenesis and progression of diabetic retinopathy[J/OL]. Int J Mol Sci, 2023, 24(12): 10167[2023-06-15]. https://pubmed.ncbi.nlm.nih.gov/37373315/. DOI: 10.3390/ijms241210167.
- 34. Amjad R, Lee CA, Farooqi HMU, et al. Choroidal thickness in different patterns of diabetic macular edema[J/OL]. J Clin Med, 2022, 11(20): 6169[2022-10-19]. https://pubmed.ncbi.nlm.nih.gov/36294492/. DOI: 10.3390/jcm11206169.
- 35. Loria O, Kodjikian L, Denis P, et al. Quantitative analysis of choriocapillaris alterations in swept-source optical coherence tomography angiography in diabetic patients[J]. Retina, 2021, 41(9): 1809-1818. DOI: 10.1097/IAE.0000000000003102.
- 36. Kim YK, An Y, Park SP. Intraocular and interocular differences in parafoveal vascular density in diabetic patients without diabetic retinopathy[J]. Retina, 2021, 41(1): 170-180. DOI: 10.1097/IAE.0000000000002781.
- 37. Papasavvas I, Tucker WR, Mantovani A, et al. Choroidal vasculitis as a biomarker of inflammation of the choroid. Indocyanine Green Angiography (ICGA) spearheading for diagnosis and follow-up, an imaging tutorial[J/OL]. J Ophthalmic Inflamm Infect, 2024, 14(1): 63[2024-12-04]. https://pubmed.ncbi.nlm.nih.gov/39633039/. DOI: 10.1186/s12348-024-00442-w.
- 38. 趙立宇, 姜茂華, 楊芳, 等. 糖尿病性視網膜病變患者常規全視網膜光凝后黃斑中心凹下脈絡膜厚度變化的薈萃分析[J]. 眼科新進展, 2022, 42(2): 136-141. DOI: 10.13389/j.cnki.rao.2022.0028.Zhao LY, Jiang MH Yang F, et al. A meta-analysis of changes in the subfoveal choroidal thickness in diabetic retinopathy patients after conventional panretinal photocoagulation[J]. Rec Adv Ophthalmol, 2022, 42(2): 136-141. DOI: 10.13389/j.cnki.rao.2022.0028.
- 39. Li G, Ho M, Li S, et al. comparing functional and vascular layer outcomes of laser photocoagulation versus subthreshold micropulse laser for diabetic macular edema: an OCT-angiography study[J]. Retina Phila Pa, 2023, 43(5): 823-831. DOI: 10.1097/IAE.0000000000003711.
- 40. 胡可可, 惠延年, 杜紅俊. 抗VEGF時代激光光凝治療糖尿病視網膜病變的應用進展[J]. 國際眼科雜志, 2023, 23(8): 1285-1289. DOI: 10.3980/j.issn.1672-5123.2023.8.09.Hu KK, Hui YN, Du HJ. Application progress of laser photocoagulation in diabetic retinopathy treatment in the era of anti-vascular endothelial growth factor agents[J]. Int Eye Sci, 2023, 23(8): 1285-1289. DOI: 10.3980/j.issn.1672-5123.2023.8.09.
- 41. American Diabetes Association Professional Practice Committee. 9. pharmacologic approaches to glycemic treatment: standards of care in diabetes-2025[J]. Diabetes Care, 2025, 48(1 Suppl 1): S181-206. DOI: 10.2337/dc25-S009.
- 42. 馮超, 徐沖, 閻靜, 等. 玻璃體內注射雷珠單抗治療重度非增生型糖尿病視網膜病變伴黃斑水腫后患者脈絡膜厚度的變化[J]. 眼科新進展, 2017, 37(4): 335-337. DOI: 10.13389/j.cnki.rao.2017.0084.Feng C, Xu C, Yan J, et al. Changes of choroidal thickness after ranibizumab treatment for non-proliferative diabetic retinopathy with macular edema[J]. Rec Adv Ophthalmol, 2017, 37(4): 335-337. DOI: 10.13389/j.cnki.rao.2017.0084.
- 43. Sarda V, Eymard P, Hrarat L, et al. Comparison of the effect of ranibizumab and aflibercept on changes in macular choroidal thickness in patients treated for diabetic macular edema[J/OL]. J Ophthalmol, 2020, 2020: 5708354[2020-08-11]. https://pubmed.ncbi.nlm.nih.gov/32850142/. DOI: 10.1155/2020/5708354.
- 44. Nourinia R, Ahmadieh H, Nekoei E, et al. Changes in central choroidal thickness after treatment of diabetic macular edema with intravitreal bevacizumab correlation with central macular thickness and best-corrected visual acuity[J]. Retina Phila Pa, 2018, 38(5): 970-975. DOI: 10.1097/IAE.0000000000001645.
- 45. Yang X, Cao Y, Cao X, et al. Anti‐ VEGF monotherapy versus anti‐ VEGF therapy combined with laser or intravitreal glucocorticoid therapy for diabetic macular edema: a bayesian network meta‐analysis[J]. Diabetes Obes Metab, 2025, 27(5): 2679-2689. DOI: 10.1111/dom.16270.
- 46. Chen C, Wang Z, Yan W, et al. Anti-VEGF combined with ocular corticosteroids therapy versus anti-VEGF monotherapy for diabetic macular edema focusing on drugs injection times and confounding factors of pseudophakic eyes: a systematic review and meta-analysis[J/OL]. Pharmacol Res, 2023, 196: 106904[2023-09-04]. https://pubmed.ncbi.nlm.nih.gov/37666311/. DOI: 10.1016/j.phrs.2023.106904.
- 47. 宋楚楚. 注射雷珠單抗聯合視網膜眼底激光治療對糖尿病視網膜病變患者的影響[J]. 中外醫藥研究, 2025, 4(13): 40-42. DOI: 10.19368/j.cnki.2096-1782.2024.07.083.Song CC. Influence of Ranibizumab injection combined with retinal membrane fundus laser therapy on patients with diabetic retinopathy[J]. Journal of Chinese and Foreign Medicine and Pharmacy Research, 2025, 4(13): 40-42. DOI: 10.19368/j.cnki.2096-1782.2024.07.083.
- 48. 趙昆, 杜偉偉. 玻璃體內注射雷珠單抗聯合激光光凝治療糖尿病視網膜病變伴黃斑水腫的臨床效果[J]. 臨床醫學工程, 2024, 31(11): 1327-1328. DOI: 10.3969/j.issn.1674-4659.2024.11.1327.Zhao K, Du WW. Clinical effect of intravitreal injection of ranibizumab combined with laser photocoagulation in treatment of diabetic retinopathy complicated with macular edema[J]. Clinical Medical & Engineering, 2024, 31(11): 1327-1328. DOI: 10.3969/j.issn.1674-4659.2024.11.1327.
- 49. Temel E, Ozcan G, Yanik O, et al. Choroidal structural alterations in diabetic patients in association with disease duration, HbA1c level, and presence of retinopathy[J]. Int Ophthalmol, 2022, 42(12): 3661-3672. DOI: 10.1007/s10792-022-02363-w.
- 50. Li YN, Liang HW, Zhang CL, et al. Ophthalmic solution of smart supramolecular peptides to capture semaphorin 4D against diabetic retinopathy[J/OL]. Adv Sci Weinh Baden-Wurtt Ger, 2023, 10(3): e2203351[2022-11-27]. https://pubmed.ncbi.nlm.nih.gov/36437109/. DOI: 10.1002/advs.202203351.
- 51. 陳銘豪, 劉沛雨, 王旋, 等. 糖尿病視網膜病變的藥物治療研究進展[J]. 上海交通大學學報(醫學版), 2024, 44(7): 822-829. DOI: 10.3969/j.issn.1674-8115.2024.07.003.Chen MH, Liu PY, Wang X, et al. Advances in drug therapy of diabetic retinopathy[J]. Journal of Shanghai Jiaotong University(Medical Science), 2024, 44(7): 822-829. DOI: 10.3969/j.issn.1674-8115.2024.07.003.
- 52. Liu B, Ma G, Hou J, et al. Choroidal structural changes of posterior subtenon triamcinolone acetonide injection in eyes with refractory diabetic macular edema[J/OL]. J Ophthalmol, 2022, 2022: 6882607[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35237449/. DOI: 10.1155/2022/6882607.
- 53. Kocami? ?, Temel E, ?zcan G, et al. Choroidal vascularity index after a single dose of intravitreal dexamethasone implant in patients with refractory diabetic macular oedema[J/OL]. Photodiagnosis Photodyn Ther, 2022, 39: 102996[2022-02-21]. https://pubmed.ncbi.nlm.nih.gov/35237449/. DOI: 10.1016/j.pdpdt.2022.102996.
- 54. Moon KY, Choi SY, Song JH. Changes in subfoveal choroidal thickness after intravitreal dexamethasone implant therapy for diabetic macular edema[J]. Retina Phila Pa, 2021, 41(6): 1283-1292. DOI: 10.1097/IAE.0000000000003029.
- 55. Yamamoto K, Iwase T, Ushida H, et al. Changes in retinochoroidal thickness after vitrectomy for proliferative diabetic retinopathy[J/OL]. Investig Opthalmology Vis Sci, 2015, 56(5): 3034[2015-05-01]. https://pubmed.ncbi.nlm.nih.gov/26024087/. DOI: 10.1167/iovs.14-15981.
- 56. 紀風濤, 王慧, 魏科, 等. SS-OCTA評估增殖性糖尿病視網膜病變玻璃體切除術后黃斑微血管的變化[J]. 國際眼科雜志, 2023, 23(5): 747-753. DOI: 10.3980/j.issn.1672-5123.2023.5.06.Ji FT, Wang H, Wei K, et al. Evaluation of macular microvasculature alterations in patients with proliferative diabetic retinopathy after vitrectomy by swept-source optical coherence tomography angiography[J]. Int Eye Sci, 2023, 23(5): 747-753. DOI: 10.3980/j.issn.1672-5123.2023.5.06.
- 57. Nicolini N, Tombolini B, Barresi C, et al. Assessment of diabetic choroidopathy using ultra-widefield optical coherence tomography[J/OL]. Transl Vis Sci Technol, 2022, 11(3): 35[2022-03-02]. https://pubmed.ncbi.nlm.nih.gov/35353150/. DOI: 10.1167/tvst.11.3.35.
- 58. Wang X, Li R, Chen J, et al. Choroidal vascularity index (CVI)-net-based automatic assessment of diabetic retinopathy severity using CVI in optical coherence tomography images[J/OL]. J Biophotonics, 2023, 16(6): e202200370[2023-02-16]. https://pubmed.ncbi.nlm.nih.gov/36633529/. DOI: 10.1002/jbio.202200370.
- 59. Li Z, Yang F, Deng X, et al. Association between choroidal thickness and diabetic macular edema: a meta-analysis[J]. Acta Diabetol, 2024, 61(8): 951-961. DOI: 10.1007/s00592-024-02306-0.
- 60. Altun A, Hacimustafaoglu AM. Effect of dexamethasone implant on subfoveal choroidal thickness in early period in vitrectomized eyes with diabetic macular edema[J/OL]. J Ophthalmol, 2021, 2021: 8840689[2021-04-12]. https://pubmed.ncbi.nlm.nih.gov/33936810/. DOI: 10.1155/2021/8840689.
- 61. Matsathit U, Komolkriengkrai M, Khimmaktong W. Glabridin and gymnemic acid alleviates choroid structural change and choriocapillaris impairment in diabetic rat’s eyes[J/OL]. World J Diabetes, 2025, 16(3): 97336[2025-04-15]. https://pubmed.ncbi.nlm.nih.gov/40093291/. DOI: 10.4239/wjd.v16.i3.97336.
- 62. Bolac R, Bas S, Ozkan EMA, et al. Evaluation of the effect of sodium-glucose cotransporter-2 inhibitor treatment on choroidal vascular parameters in patients with type 2 diabetes mellitus[J/OL]. Photodiagnosis Photodyn Ther, 2023, 44: 103804[2023-09-14]. https://pubmed.ncbi.nlm.nih.gov/37714281/. DOI: 10.1016/j.pdpdt.2023.103804.
- 63. Oelze M, Kr?ller-Sch?n S, Welschof P, et al. The sodium-glucose Co-transporter 2 inhibitor empagliflozin improves diabetes-induced vascular dysfunction in the streptozotocin diabetes rat model by interfering with oxidative stress and glucotoxicity[J/OL]. PLoS One, 2014, 9(11): e112394[2014-11-17]. https://pubmed.ncbi.nlm.nih.gov/25402275/. DOI: 10.1371/journal.pone.0112394.
- 64. May M, Framke T, Junker B, et al. How and why SGLT2 inhibitors should be explored as potential treatment option in diabetic retinopathy: clinical concept and methodology[J/OL]. Ther Adv Endocrinol Metab, 2019, 10: 2042018819891886[2019-12-11]. https://pubmed.ncbi.nlm.nih.gov/31853361/. DOI: 10.1177/2042018819891886.
- 65. Xu C, Meng Z, Lin W, et al. Semaglutide ameliorates retinal vascular permeability destruction in diabetic retinopathy by AnxA2-mediated MMP-9 activation and basement membrane remodeling[J/OL]. Biomed Pharmacother Biomedecine Pharmacother, 2025, 190: 118409[2025-07-31]. https://pubmed.ncbi.nlm.nih.gov/40749340/. DOI: 10.1016/j.biopha.2025.118409.
- 66. Yang X, Wu S, Feng Z, et al. Combination therapy with semaglutide and rosiglitazone as a synergistic treatment for diabetic retinopathy in rodent animals[J/OL]. Life Sci, 2021, 269: 119013[2021-04-15]. https://pubmed.ncbi.nlm.nih.gov/33417950/. DOI: 10.1016/j.lfs.2020.119013.
- 67. 桑智慧, 李慧紅, 周麗娟. 中藥治療糖尿病視網膜病變的療效及機制研究進展[J]. 中國藥房, 2023, 34(12): 1532-1536. DOI: 10.6039/j.issn.1001-0408.2023.12.24.Sang ZH, Li HH, Zhou LJ. Research progress on the curative effect and mechanism of traditional Chinese medicine in the treatment of diabetic retinopathy[J]. China Pharmacy, 2023, 34(12): 1532-1536. DOI: 10.6039/j.issn.1001-0408.2023.12.24.
- 68. 陳子揚, 謝立科, 郝曉鳳. 中醫藥治療糖尿病視網膜病變的研究進展[J]. 中國中醫眼科雜志, 2023, 33(1): 84-87. DOI: 10.13444/j.cnki.zgzyykzz.2023.01.021.Chen ZY, Xie LK, Hao XF. Research progress of Traditional Chinese Medicine in treatment of diabetic retinopathy[J]. Chinese Journal of Chinese Ophthalmology, 2023, 33(1): 84-87. DOI: 10.13444/j.cnki.zgzyykzz.2023.01.021.
- 69. 范明峰. 血府逐瘀湯治療氣滯血瘀型非增殖性糖尿病視網膜病變患者的臨床效果分析[J]. 大醫生, 2025, 10(6): 90-92. DOI: 10.3969/j.issn.2096-2665.2025.06.028.Fan MF. Analysis of the clinical effect of Xuefu Zhuyu Decoction in treating patients with non-proliferative diabetic retinopathy of Qi stagnation and Blood Stasis type[J]. Doctor, 2025, 10(6): 90-92. DOI: 10.3969/j.issn.2096-2665.2025.06.028.
- 70. 林潤平. 復明片和和血明目片對糖尿病性視網膜病變脈絡膜厚度及視力的影響[J]. 海峽藥學, 2020, 32(7): 161-163. DOI: 10.3969/j.issn.1006-3765.2020.07.068.Lin RP. The influence of Fuming Tablets and Hexue Mingmu Tablets on choroidal thickness and visual acuity in diabetic retinopathy[J]. Strait Pharmaceutical Journal, 2020, 32(7): 161-163. DOI: 10.3969/j.issn.1006-3765.2020.07.068.
- 71. 張永斌, 楊金崗. 通絡明目膠囊對糖尿病視網膜病變患者眼底微循環及脈絡膜厚度的影響[J]. 大醫生, 2025, 10(3): 89-92. DOI: 10.3969/j.issn.2096-2665.2025.03.029.Zhang YB, Yang JG. The influence of Tongluo Mingmu Capsules on the microcirculation of the fundus and choroidal thickness in patients with diabetic retinopathy[J]. Doctor, 2025, 10(3): 89-92. DOI: 10.3969/j.issn.2096-2665.2025.03.029.
- 72. 王莎莎, Jorge A. Trujillo Perdomo, 薛敏, 等. 和血明目片聯合全視網膜激光光凝術對糖尿病視網膜病變患者視力狀況、血液流變學及脈絡膜厚度的影響[J]. 現代生物醫學進展, 2022, 22(17): 3343-3346. DOI: 10.13241/j.cnki.pmb.2022.17.028.Wang SS, Jorge A. Trujillo Perdomo, Xue M, et al. Effects of hexuemingmu tablet combined with whole retina laser photocoagulation on visual acuity, hemorheology and choroidal thickness in patients with diabetes retinopathy[J]. Progress in Modern Biomedicine, 2022, 22(17): 3343-3346. DOI: 10.13241/j.cnki.pmb.2022.17.028.
- 73. 安鑫, 焦劍, 魏文斌, 等. 復方樟柳堿聯合視網膜激光光凝治療重度非增殖性糖尿病視網膜病變[J]. 國際眼科雜志, 2024, 24(5): 790-794. DOI: 10.3980/j.issn.1672-5123.2024.5.24.An X, Jiao J, Wei WB, et al. Compound anisodine combined with retinal laser photocoagulation for the treatment of severe non-proliferative diabetic retinopathy[J]. Int Eye Sci, 2024, 24(5): 790-794. DOI: 10.3980/j.issn.1672-5123.2024.5.24.
- 74. 閆晨曦, 姚克. 中國糖尿病患者白內障圍手術期管理策略專家共識(2020年)解讀[J]. 海南醫學, 2020, 31(19): 2449-2451. DOI: 10.3760/cma.j.cn112142-20191106-00559.Yan CX, Yao K. Expert consensus on perioperative management strategies for cataract in Chinese diabetic patients (2020)[J]. Hainan Medical Journal, 2020, 31(19): 2449-2451. DOI: 10.3760/cma.j.cn112142-20191106-00559.
- 75. Yip VC, Laude A, Tan KA, et al. A longitudinal study of choroidal changes following cataract surgery in patients with diabetes[J]. Diab Vasc Dis Res, 2019, 16(4): 369-377. DOI: 10.1177/1479164119841536.
- 76. 王造文, 王爾茜, 陳有信. 年齡相關性白內障合并2型糖尿病患者超聲乳化術后黃斑區脈絡膜毛細血管血流密度變化及相關性研究[J]. 眼科新進展, 2020, 40(10): 963-966. DOI: 10.13389/j.cnki.rao.2020.0216.Wang ZW, Wang EX, Chen YX. Choriocapillary flow changes after phacoemulsification surgery in patients with type 2 diabetes and its related factors[J]. Rec Adv Ophthalmol, 2020, 40(10): 963-966. DOI: 10.13389/j.cnki.rao.2020.0216.

