- Department of Ophthalmology, Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China;
Diabetic retinopathy (DR) is a major cause of visual impairment among working-age populations. In recent years, artificial intelligence (AI) has demonstrated significant application value in DR diagnosis, leveraging core advantages such as high efficiency and low error rates. Currently, the technical system of AI in DR image diagnosis mainly includes links like image preprocessing, feature extraction, diverse algorithmic models, and dataset construction. In practical applications, AI models can achieve automated screening and grading diagnosis of DR images, enhance diagnostic efficiency by integrating multimodal technologies, and have been successfully applied to mobile devices; meanwhile, the development of explainable AI has further boosted the credibility of AI models. Currently, this field still faces challenges, including insufficient data quality and scale, limited model interpretability, inadequate clinical validation, ethical and privacy risks, and a lack of unified technical standards. In the future, with continuous technological breakthroughs and the establishment of standardized evaluation systems, the reliability and accessibility of AI in DR diagnosis will be further enhanced.
Citation: Feng Siqi, Xu Xinrong. Application of artificial intelligence in the diagnosis imaging of diabetic retinopathy. Chinese Journal of Ocular Fundus Diseases, 2026, 42(2): 174-180. doi: 10.3760/cma.j.cn511434-20250901-00370 Copy
Copyright ? the editorial department of Chinese Journal of Ocular Fundus Diseases of West China Medical Publisher. All rights reserved
| 1. | Zago GT, Andre?o RV, Dorizzi B, et al. Diabetic retinopathy detection using red lesion localization and convolutional neural networks[J/OL]. Comput Biol Med, 2020, 116: 103537[2019-11-11]. https://pubmed.ncbi.nlm.nih.gov/31747632/. DOI: 10.1016/j.compbiomed.2019.103537. |
| 2. | International Diabetes Federation. IDF Diabetes Atlas, 11th ed[EB/OL]. (2025-03-16)[2053-09-01]. https://diabetesatlas.org. |
| 3. | |
| 4. | Xu Y, Wang Y, Liu B, et al. The diagnostic accuracy of an intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients[J/OL]. BMC Ophthalmol, 2019, 19(1): 184[2019-08-14]. https://pubmed.ncbi.nlm.nih.gov/31412800/. DOI: 10.1186/s12886-019-1196-9. |
| 5. | Van Craenendonck T, Elen B, Gerrits N, et al. Systematic comparison of heatmapping techniques in deep learning in the context of diabetic retinopathy lesion detection[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 64[2020-12-29]. https://pubmed.ncbi.nlm.nih.gov/33403156/. DOI: 10.1167/tvst.9.2.64. |
| 6. | |
| 7. | 趙學功. 基于眼底圖像的糖尿病誘發視網膜病變輔助診斷關鍵技術研究[D]. 成都: 電子科技大學, 2021.Zhao XG. Research on key technologies for auxiliary diagnosis of diabetic retinopathy based on fundus images[D]. Chengdu: University of Electronic Science and Technology of China, 2021. |
| 8. | Nandhini T. Rectal fundus image recognition using deep learning ensemble CNN models[J/OL]. Rec Adv Ophthalmol, 2025, 10(26): 690-702. DOI: 10.52783/jisem.v10i26s.4276. |
| 9. | |
| 10. | Monemian M, Rabbani H. Detecting red-lesions from retinal fundus images using unique morphological features[J/OL]. Sci Rep, 2023, 13(1): 3487[2023-03-01]. https://pubmed.ncbi.nlm.nih.gov/36859429/. DOI: 10.1038/s41598-023-30459-5. |
| 11. | Chang MH, Chen CY, Yu CH, et al. Vessel segmentation and dirt/reflection detection for retinal fundus photographs. Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France. New York: IEEE Press, 2022. |
| 12. | |
| 13. | Khojasteh P, Aliahmad B, Kumar DK. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms[J/OL]. BMC Ophthalmol, 2018, 18(1): 288[2018-11-06]. https://pubmed.ncbi.nlm.nih.gov/30400869/. DOI: 10.1186/s12886-018-0954-4. |
| 14. | Saleh I, El-Den NN, Elsharkawy M, et al. AI-based methods for diagnosing and grading diabetic retinopathy: a comprehensive review[J/OL]. Artif Intell Med, 2025, 168: 103221[2025-07-19]. https://pubmed.ncbi.nlm.nih.gov/40706108/. DOI: 10.1016/j.artmed.2025.103221. |
| 15. | Vijayan M, Venkatakrishnan S. A regression-based approach to diabetic retinopathy diagnosis using efficientnet[J/OL]. Diagnostics (Basel), 2023, 13(4): 774[2023-02-17]. https://pubmed.ncbi.nlm.nih.gov/36832262/. DOI: 10.3390/diagnostics13040774. |
| 16. | Liu Z, Gao A, Sheng H, et al. Identification of diabetic retinopathy lesions in fundus images by integrating CNN and vision mamba models[J/OL]. PLoS One, 2025, 20(1): e0318264[2025-01-28]. https://pubmed.ncbi.nlm.nih.gov/39874303/. DOI: 10.1371/journal.pone.0318264. |
| 17. | Liu C, Wang W, Lian J, et al. Lesion classification and diabetic retinopathy grading by integrating softmax and pooling operators into vision transformer[J/OL]. Front Public Health, 2025, 12: 1442114[2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39835306/. DOI: 10.3389/fpubh.2024.1442114. |
| 18. | Yang Y, Cai Z, Qiu S, et al. Vision transformer with masked autoencoders for referable diabetic retinopathy classification based on large-size retina image[J/OL]. PLoS One, 2024, 19(3): e0299265[2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/38446810/. DOI: 10.1371/journal.pone.0299265. |
| 19. | |
| 20. | Porwal P, Pachade S, Kamble R, et al. Indian Diabetic Retinopathy Image Dataset (IDRiD): a database for diabetic retinopathy screening research[J/OL]. Data, 2018, 3(3): 25[2018-06-05]. https://doi.org/10.3390/data3030025. |
| 21. | Wu C, Restrepo D, Nakayama LF, et al. A portable retina fundus photos dataset for clinical, demographic, and diabetic retinopathy prediction[J/OL]. Sci Data, 2025, 12(1): 323[2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/39987104/. DOI: 10.1038/s41597-025-04627-3. |
| 22. | Panchal S, Naik A, Kokare M, et al. Retinal fundus multi-disease image dataset (RFMiD) 2.0: a dataset of frequently and rarely identified diseases[J/OL]. ResearchGate, 2025, 8(2): 9[2025-10-02]. https://doi.org/10.3390/data8020029. DOI:10.3390/data8020029. |
| 23. | Pachade S, Porwal P, Kokare M, et al. RFMiD: retinal image analysis for multi-disease detection challenge[J/OL]. Med Image Anal, 2025, 99: 103365[2024-10-09]. https://pubmed.ncbi.nlm.nih.gov/39395210/. DOI: 10.1016/j.media.2024.103365. |
| 24. | |
| 25. | |
| 26. | Kauppi T, Pietil? J, Kalesnykiene V, et al. The DIARETDB1 diabetic retinopathy database and evaluation protocol[C/OL]//Proceedings of the British Machine Vision Conference. Warwick, UK: British Machine Vision Association, 2007: 15.1-15.10[2025-10-02]. http://www.bmva.org/bmvc/2007/papers/paper-60.html. DOI: 10.5244/C.21.15.2007. |
| 27. | |
| 28. | |
| 29. | |
| 30. | Bilal A, Zhu L, Deng A, et al. AI-based automatic detection and classification of diabetic retinopathy using U-Net and deep learning[J/OL]. Symmetry, 2022, 14: 1427[2022-06-14]. https://doi.org/10.3390/sym14071427. |
| 31. | Li F, Pan J, Yang D, et al. A multicenter clinical study of the automated fundus screening algorithm[J/OL]. Transl Vis Sci Technol, 2022, 11(7): 22[2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/35881410/. DOI: 10.1167/tvst.11.7.22. |
| 32. | |
| 33. | |
| 34. | Lian J, Liu T. Lesion identification in fundus images via convolutional neural network-vision transformer[J/OL]. Biomed Signal Process Control, 2024, 88: 105607[2024-02-01]. https://doi.org/10.1016/j.bspc.2023.105607. DOI: 10.1016/j.bspc.2023.105607. |
| 35. | Asia AO, Zhu CZ, Althubiti SA, et al. Detection of diabetic retinopathy in retinal fundus images using CNN classification models[J/OL]. Electronics, 2022, 11(17): 2740[2022-08-05]. https://doi.org/10.3390/electronics11172740. |
| 36. | |
| 37. | Oh K, Kang HM, Leem D, et al. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images[J/OL]. Sci Rep, 2021, 11(1): 1897[2021-01-21]. https://pubmed.ncbi.nlm.nih.gov/33479406/. DOI: 10.1038/s41598-021-81539-3. |
| 38. | Ryu G, Lee K, Park D, et al. A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography[J/OL]. Sci Rep, 2021, 11(1): 23024[2021-11-26]. https://pubmed.ncbi.nlm.nih.gov/34837030/. DOI: 10.1038/s41598-021-02479-6. |
| 39. | |
| 40. | Karkera T, Adak C, Chattopadhyay S, et al. Detecting severity of diabetic retinopathy from fundus images: a transformer network-based review[J/OL]. Neurocomputing, 2024, 597: 127991[2024-09-07]. https://doi.org/10.1016/j.neucom.2024.127991. DOI: 10.1016/j.neucom.2024.127991. |
| 41. | Jabbar MK, Yan J, Xu H, et al. Transfer learning-based model for diabetic retinopathy diagnosis using retinal images[J/OL]. Brain Sciences, 2022, 12(5): 535[2022-04-22]. https://doi.org/10.3390/brainsci12050535. |
| 42. | |
| 43. | Chilukoti SV, Maida AS, Hei XL. Diabetic retinopathy detection using transfer learning from pre-trained convolutional neural network models[J/OL]. IEEE J Biomed. Health Inform, 2022, 2022: 10[2025-10-02]. https://doi.org/10.36227/techrxiv.18515357.v1. DOI:10.36227/techrxiv.18515357.v1. |
| 44. | |
| 45. | Karthikeyan S, Selva SS, Sreeja GG, et al. Multimodal approach for diabetic retinopathy detection using deep learning and clinical data fusion[C]. Proceedings of the 2024 9th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2024. New York: IEEE Press, 2024. |
| 46. | Wijesinghe I, Gamage C, Perera I, et al. A smart telemedicine system with deep learning to manage diabetic retinopathy and foot ulcers[C]. Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2019. New York: IEEE Press, 2019. |
| 47. | Ayoub S, Khan MA, Jadhav VP, et al. Minimized computations of deep learning technique for early diagnosis of diabetic retinopathy using IoT-based medical devices[J/OL]. Comput Intell Neurosci, 2022, 2022: 7040141[2022-09-14]. https://pubmed.ncbi.nlm.nih.gov/36156979/. DOI: 10.1155/2022/7040141. |
| 48. | |
| 49. | |
| 50. | |
| 51. | |
| 52. | |
| 53. | Amparore E, Perotti A, Bajardi P. To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods[J/OL]. PeerJ Comput Sci, 2021, 7: e479[2021-04-16]. https://pubmed.ncbi.nlm.nih.gov/33977131/. DOI: 10.7717/peerj-cs.479. |
| 54. | Anderson M, Sadiq S, Nahaboo Solim M, et al. Biomedical data annotation: an OCT imaging case study[J/OL]. J Ophthalmol, 2023, 2023: 5747010[2023-08-22]. https://pubmed.ncbi.nlm.nih.gov/37650051/. DOI: 10.1155/2023/5747010. |
| 55. | Aswal S, Ahuja NJ, Mehra R. Handling imbalance and limited data in thyroid ultrasound and diabetic retinopathy datasets using discrete levy flights grey wolf optimizer based random forest for robust medical data classification[J/OL]. ACM Trans Asian Low-Resour Lang Inf Process, 2024, 2024: e1-e25[2024-01-31]. https://doi.org/10.1145/3648363. DOI: 10.1145/3648363. |
| 56. | Liu R, Hall LO, Bowyer KW, et al. Synthetic minority image over-sampling technique: how to improve AUC for glioblastoma patient survival prediction[C]. Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 2017. New York: IEEE Press, 2017. |
| 57. | Zhao R, Chen X, Chen Z, et al. Diagnosing glaucoma on imbalanced data with self-ensemble dual-curriculum learning[J/OL]. Med Image Anal, 2022, 75: 102295[2021-10-29]. https://pubmed.ncbi.nlm.nih.gov/34753022/. DOI: 10.1016/j.media.2021.102295. |
| 58. | |
| 59. | Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges[J/OL]. Int J Environ Res Public Health, 2021, 18(1): 271[2021-10-29]. https://pubmed.ncbi.nlm.nih.gov/34753022/. DOI: 10.3390/ijerph18010271. |
| 60. | Mudgal SK, Agarwal R, Chaturvedi J, et al. Real-world application, challenges and implication of artificial intelligence in healthcare: an essay[J/OL]. Pan Afr Med J, 2022, 43: 3[2022-09-02]. https://pubmed.ncbi.nlm.nih.gov/36284890/. DOI: 10.11604/pamj.2022.43.3.33384. |
- 1. Zago GT, Andre?o RV, Dorizzi B, et al. Diabetic retinopathy detection using red lesion localization and convolutional neural networks[J/OL]. Comput Biol Med, 2020, 116: 103537[2019-11-11]. https://pubmed.ncbi.nlm.nih.gov/31747632/. DOI: 10.1016/j.compbiomed.2019.103537.
- 2. International Diabetes Federation. IDF Diabetes Atlas, 11th ed[EB/OL]. (2025-03-16)[2053-09-01]. https://diabetesatlas.org.
- 3.
- 4. Xu Y, Wang Y, Liu B, et al. The diagnostic accuracy of an intelligent and automated fundus disease image assessment system with lesion quantitative function (SmartEye) in diabetic patients[J/OL]. BMC Ophthalmol, 2019, 19(1): 184[2019-08-14]. https://pubmed.ncbi.nlm.nih.gov/31412800/. DOI: 10.1186/s12886-019-1196-9.
- 5. Van Craenendonck T, Elen B, Gerrits N, et al. Systematic comparison of heatmapping techniques in deep learning in the context of diabetic retinopathy lesion detection[J/OL]. Transl Vis Sci Technol, 2020, 9(2): 64[2020-12-29]. https://pubmed.ncbi.nlm.nih.gov/33403156/. DOI: 10.1167/tvst.9.2.64.
- 6.
- 7. 趙學功. 基于眼底圖像的糖尿病誘發視網膜病變輔助診斷關鍵技術研究[D]. 成都: 電子科技大學, 2021.Zhao XG. Research on key technologies for auxiliary diagnosis of diabetic retinopathy based on fundus images[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
- 8. Nandhini T. Rectal fundus image recognition using deep learning ensemble CNN models[J/OL]. Rec Adv Ophthalmol, 2025, 10(26): 690-702. DOI: 10.52783/jisem.v10i26s.4276.
- 9.
- 10. Monemian M, Rabbani H. Detecting red-lesions from retinal fundus images using unique morphological features[J/OL]. Sci Rep, 2023, 13(1): 3487[2023-03-01]. https://pubmed.ncbi.nlm.nih.gov/36859429/. DOI: 10.1038/s41598-023-30459-5.
- 11. Chang MH, Chen CY, Yu CH, et al. Vessel segmentation and dirt/reflection detection for retinal fundus photographs. Proceedings of the 2022 IEEE International Conference on Image Processing (ICIP), Bordeaux, France. New York: IEEE Press, 2022.
- 12.
- 13. Khojasteh P, Aliahmad B, Kumar DK. Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms[J/OL]. BMC Ophthalmol, 2018, 18(1): 288[2018-11-06]. https://pubmed.ncbi.nlm.nih.gov/30400869/. DOI: 10.1186/s12886-018-0954-4.
- 14. Saleh I, El-Den NN, Elsharkawy M, et al. AI-based methods for diagnosing and grading diabetic retinopathy: a comprehensive review[J/OL]. Artif Intell Med, 2025, 168: 103221[2025-07-19]. https://pubmed.ncbi.nlm.nih.gov/40706108/. DOI: 10.1016/j.artmed.2025.103221.
- 15. Vijayan M, Venkatakrishnan S. A regression-based approach to diabetic retinopathy diagnosis using efficientnet[J/OL]. Diagnostics (Basel), 2023, 13(4): 774[2023-02-17]. https://pubmed.ncbi.nlm.nih.gov/36832262/. DOI: 10.3390/diagnostics13040774.
- 16. Liu Z, Gao A, Sheng H, et al. Identification of diabetic retinopathy lesions in fundus images by integrating CNN and vision mamba models[J/OL]. PLoS One, 2025, 20(1): e0318264[2025-01-28]. https://pubmed.ncbi.nlm.nih.gov/39874303/. DOI: 10.1371/journal.pone.0318264.
- 17. Liu C, Wang W, Lian J, et al. Lesion classification and diabetic retinopathy grading by integrating softmax and pooling operators into vision transformer[J/OL]. Front Public Health, 2025, 12: 1442114[2025-01-06]. https://pubmed.ncbi.nlm.nih.gov/39835306/. DOI: 10.3389/fpubh.2024.1442114.
- 18. Yang Y, Cai Z, Qiu S, et al. Vision transformer with masked autoencoders for referable diabetic retinopathy classification based on large-size retina image[J/OL]. PLoS One, 2024, 19(3): e0299265[2024-03-06]. https://pubmed.ncbi.nlm.nih.gov/38446810/. DOI: 10.1371/journal.pone.0299265.
- 19.
- 20. Porwal P, Pachade S, Kamble R, et al. Indian Diabetic Retinopathy Image Dataset (IDRiD): a database for diabetic retinopathy screening research[J/OL]. Data, 2018, 3(3): 25[2018-06-05]. https://doi.org/10.3390/data3030025.
- 21. Wu C, Restrepo D, Nakayama LF, et al. A portable retina fundus photos dataset for clinical, demographic, and diabetic retinopathy prediction[J/OL]. Sci Data, 2025, 12(1): 323[2025-02-22]. https://pubmed.ncbi.nlm.nih.gov/39987104/. DOI: 10.1038/s41597-025-04627-3.
- 22. Panchal S, Naik A, Kokare M, et al. Retinal fundus multi-disease image dataset (RFMiD) 2.0: a dataset of frequently and rarely identified diseases[J/OL]. ResearchGate, 2025, 8(2): 9[2025-10-02]. https://doi.org/10.3390/data8020029. DOI:10.3390/data8020029.
- 23. Pachade S, Porwal P, Kokare M, et al. RFMiD: retinal image analysis for multi-disease detection challenge[J/OL]. Med Image Anal, 2025, 99: 103365[2024-10-09]. https://pubmed.ncbi.nlm.nih.gov/39395210/. DOI: 10.1016/j.media.2024.103365.
- 24.
- 25.
- 26. Kauppi T, Pietil? J, Kalesnykiene V, et al. The DIARETDB1 diabetic retinopathy database and evaluation protocol[C/OL]//Proceedings of the British Machine Vision Conference. Warwick, UK: British Machine Vision Association, 2007: 15.1-15.10[2025-10-02]. http://www.bmva.org/bmvc/2007/papers/paper-60.html. DOI: 10.5244/C.21.15.2007.
- 27.
- 28.
- 29.
- 30. Bilal A, Zhu L, Deng A, et al. AI-based automatic detection and classification of diabetic retinopathy using U-Net and deep learning[J/OL]. Symmetry, 2022, 14: 1427[2022-06-14]. https://doi.org/10.3390/sym14071427.
- 31. Li F, Pan J, Yang D, et al. A multicenter clinical study of the automated fundus screening algorithm[J/OL]. Transl Vis Sci Technol, 2022, 11(7): 22[2022-07-08]. https://pubmed.ncbi.nlm.nih.gov/35881410/. DOI: 10.1167/tvst.11.7.22.
- 32.
- 33.
- 34. Lian J, Liu T. Lesion identification in fundus images via convolutional neural network-vision transformer[J/OL]. Biomed Signal Process Control, 2024, 88: 105607[2024-02-01]. https://doi.org/10.1016/j.bspc.2023.105607. DOI: 10.1016/j.bspc.2023.105607.
- 35. Asia AO, Zhu CZ, Althubiti SA, et al. Detection of diabetic retinopathy in retinal fundus images using CNN classification models[J/OL]. Electronics, 2022, 11(17): 2740[2022-08-05]. https://doi.org/10.3390/electronics11172740.
- 36.
- 37. Oh K, Kang HM, Leem D, et al. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images[J/OL]. Sci Rep, 2021, 11(1): 1897[2021-01-21]. https://pubmed.ncbi.nlm.nih.gov/33479406/. DOI: 10.1038/s41598-021-81539-3.
- 38. Ryu G, Lee K, Park D, et al. A deep learning model for identifying diabetic retinopathy using optical coherence tomography angiography[J/OL]. Sci Rep, 2021, 11(1): 23024[2021-11-26]. https://pubmed.ncbi.nlm.nih.gov/34837030/. DOI: 10.1038/s41598-021-02479-6.
- 39.
- 40. Karkera T, Adak C, Chattopadhyay S, et al. Detecting severity of diabetic retinopathy from fundus images: a transformer network-based review[J/OL]. Neurocomputing, 2024, 597: 127991[2024-09-07]. https://doi.org/10.1016/j.neucom.2024.127991. DOI: 10.1016/j.neucom.2024.127991.
- 41. Jabbar MK, Yan J, Xu H, et al. Transfer learning-based model for diabetic retinopathy diagnosis using retinal images[J/OL]. Brain Sciences, 2022, 12(5): 535[2022-04-22]. https://doi.org/10.3390/brainsci12050535.
- 42.
- 43. Chilukoti SV, Maida AS, Hei XL. Diabetic retinopathy detection using transfer learning from pre-trained convolutional neural network models[J/OL]. IEEE J Biomed. Health Inform, 2022, 2022: 10[2025-10-02]. https://doi.org/10.36227/techrxiv.18515357.v1. DOI:10.36227/techrxiv.18515357.v1.
- 44.
- 45. Karthikeyan S, Selva SS, Sreeja GG, et al. Multimodal approach for diabetic retinopathy detection using deep learning and clinical data fusion[C]. Proceedings of the 2024 9th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2024. New York: IEEE Press, 2024.
- 46. Wijesinghe I, Gamage C, Perera I, et al. A smart telemedicine system with deep learning to manage diabetic retinopathy and foot ulcers[C]. Proceedings of the 2019 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2019. New York: IEEE Press, 2019.
- 47. Ayoub S, Khan MA, Jadhav VP, et al. Minimized computations of deep learning technique for early diagnosis of diabetic retinopathy using IoT-based medical devices[J/OL]. Comput Intell Neurosci, 2022, 2022: 7040141[2022-09-14]. https://pubmed.ncbi.nlm.nih.gov/36156979/. DOI: 10.1155/2022/7040141.
- 48.
- 49.
- 50.
- 51.
- 52.
- 53. Amparore E, Perotti A, Bajardi P. To trust or not to trust an explanation: using LEAF to evaluate local linear XAI methods[J/OL]. PeerJ Comput Sci, 2021, 7: e479[2021-04-16]. https://pubmed.ncbi.nlm.nih.gov/33977131/. DOI: 10.7717/peerj-cs.479.
- 54. Anderson M, Sadiq S, Nahaboo Solim M, et al. Biomedical data annotation: an OCT imaging case study[J/OL]. J Ophthalmol, 2023, 2023: 5747010[2023-08-22]. https://pubmed.ncbi.nlm.nih.gov/37650051/. DOI: 10.1155/2023/5747010.
- 55. Aswal S, Ahuja NJ, Mehra R. Handling imbalance and limited data in thyroid ultrasound and diabetic retinopathy datasets using discrete levy flights grey wolf optimizer based random forest for robust medical data classification[J/OL]. ACM Trans Asian Low-Resour Lang Inf Process, 2024, 2024: e1-e25[2024-01-31]. https://doi.org/10.1145/3648363. DOI: 10.1145/3648363.
- 56. Liu R, Hall LO, Bowyer KW, et al. Synthetic minority image over-sampling technique: how to improve AUC for glioblastoma patient survival prediction[C]. Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 2017. New York: IEEE Press, 2017.
- 57. Zhao R, Chen X, Chen Z, et al. Diagnosing glaucoma on imbalanced data with self-ensemble dual-curriculum learning[J/OL]. Med Image Anal, 2022, 75: 102295[2021-10-29]. https://pubmed.ncbi.nlm.nih.gov/34753022/. DOI: 10.1016/j.media.2021.102295.
- 58.
- 59. Lee D, Yoon SN. Application of artificial intelligence-based technologies in the healthcare industry: opportunities and challenges[J/OL]. Int J Environ Res Public Health, 2021, 18(1): 271[2021-10-29]. https://pubmed.ncbi.nlm.nih.gov/34753022/. DOI: 10.3390/ijerph18010271.
- 60. Mudgal SK, Agarwal R, Chaturvedi J, et al. Real-world application, challenges and implication of artificial intelligence in healthcare: an essay[J/OL]. Pan Afr Med J, 2022, 43: 3[2022-09-02]. https://pubmed.ncbi.nlm.nih.gov/36284890/. DOI: 10.11604/pamj.2022.43.3.33384.
-
Previous Article
視網膜下半側靜脈阻塞、開角型青光眼伴有髓神經纖維 -
Next Article
Research progress in the treatment of primary vitreoretinal lymphoma

