| 1. |
Flaxel CJ, Adelman RA, Bailey ST, et al. Age-related macular degeneration preferred practice pattern?[J]. Ophthalmology, 2020, 127(1): 1-65. DOI: 10.1016/j.ophtha.2019.09.024.
|
| 2. |
Grossniklaus HE, Green WR. Histopathologic and ultrastructural findings of surgically excised choroidal neovascularization. Submacular Surgery Trials Research Group[J]. Arch Ophthalmol, 1998, 116(6): 745-749. DOI: 10.1001/archopht.116.6.745.
|
| 3. |
Little K, Ma JH, Yang N, et al. Myofibroblasts in macular fibrosis secondary to neovascular age-related macular degeneration-the potential sources and molecular cues for their recruitment and activation[J]. EBioMedicine, 2018, 38: 283-291. DOI: 10.1016/j.ebiom.2018.11.029.
|
| 4. |
Shu DY, Butcher E, Saint-Geniez M. EMT and EndMT: emerging roles in age-related macular degeneration[J/OL]. Int J Mol Sci, 2020, 21(12): 4271[2020-06-16]. https://pubmed.ncbi.nlm.nih.gov/32560057/. DOI: 10.3390/ijms21124271.
|
| 5. |
Ishikawa K, Kannan R, Hinton DR. Molecular mechanisms of subretinal fibrosis in age-related macular degeneration[J]. Exp Eye Res, 2016, 142: 19-25. DOI: 10.1016/j.exer.2015.03.009.
|
| 6. |
Luo X, Yang S, Liang J, et al. Choroidal pericytes promote subretinal fibrosis after experimental photocoagulation[J/OL]. Dis Model Mech, 2018, 11(4): dmm032060[2018-04-23]. https://pubmed.ncbi.nlm.nih.gov/29622551/. DOI: 10.1242/dmm.032060.
|
| 7. |
Little K, Llorián-Salvador M, Tang M, et al. Macrophage to myofibroblast transition contributes to subretinal fibrosis secondary to neovascular age-related macular degeneration[J/OL]. J Neuroinflammation, 2020, 17(1): 355[2020-11-25]. https://pubmed.ncbi.nlm.nih.gov/33239022/. DOI: 10.1186/s12974-020-02033-7.
|
| 8. |
Algvere PV, Libert C, Lindg?rde G, et al. Transpupillary thermotherapy of predominantly occult choroidal neovascularization in age-related macular degeneration with 12 months follow-up[J]. Acta Ophthalmol Scand, 2003, 81(2): 110-107. DOI: 10.1034/j.1600-0420.2003.00041.x.
|
| 9. |
de Juan E Jr, Machemer R. Vitreous surgery for hemorrhagic and fibrous complications of age-related macular degeneration[J]. Am J Ophthalmol, 1988, 105(1): 25-29. DOI: 10.1016/0002-9394(88)90116-X.
|
| 10. |
Daniel E, Pan W, Ying GS, et al. Development and course of scars in the comparison of age-related macular degeneration treatments trials[J]. Ophthalmology, 2018, 125(7): 1037-1046. DOI: 10.1016/j.ophtha.2018.01.004.
|
| 11. |
Wolff B, Macioce V, Vasseur V, et al. Ten-year outcomes of anti-vascular endothelial growth factor treatment for neovascular age-related macular disease: a single-centre French study[J]. Clin Exp Ophthalmol, 2020, 48(5): 636-643. DOI: 10.1111/ceo.13742.
|
| 12. |
Bachmeier I, Armendariz BG, Yu S, et al. Fibrosis in neovascular age-related macular degeneration: a review of definitions based on clinical imaging[J]. Surv Ophthalmol, 2023, 68(5): 835-848. DOI: 10.1016/j.survophthal.2023.03.004.
|
| 13. |
Cheong KX, Cheung CMG, Teo KYC. Review of fibrosis in neovascular age-related macular degeneration[J]. Am J Ophthalmol, 2023, 246: 192-222. DOI: 10.1016/j.ajo.2022.09.008.
|
| 14. |
Tenbrock L, Wolf J, Boneva S, et al. Subretinal fibrosis in neovascular age-related macular degeneration: current concepts, therapeutic avenues, and future perspectives[J]. Cell Tissue Res, 2021, 387(3): 361-375. DOI: 10.1007/s00441-021-03514-8.
|
| 15. |
Xiao H, Zhao X, Li S, et al. Risk factors for subretinal fibrosis after anti-VEGF treatment of myopic choroidal neovascularisation[J]. Br J Ophthalmol, 2021, 105(1): 103-108. DOI: 10.1136/bjophthalmol-2019-315763.
|
| 16. |
Saika S. TGFbeta pathobiology in the eye[J]. Lab Invest, 2006, 86(2): 106-115. DOI: 10.1038/labinvest.3700375.
|
| 17. |
Robertson IB, Rifkin DB. Regulation of the bioavailability of TGF-β and TGF-β-related proteins[J/OL]. Cold Spring Harb Perspect Biol, 2016, 8(6): a021907[2016-06-01]. https://pubmed.ncbi.nlm.nih.gov/27252363/. DOI: 10.1101/cshperspect.a021907.
|
| 18. |
Gamulescu MA, Chen Y, He S, et al. Transforming growth factor beta2-induced myofibroblastic differentiation of human retinal pigment epithelial cells: regulation by extracellular matrix proteins and hepatocyte growth factor[J]. Exp Eye Res, 2006, 83(1): 212-22. DOI: 10.1016/j.exer.2005.12.007.
|
| 19. |
Miyazawa K, Itoh Y, Fu H, et al. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling[J/OL]. J Biol Chem, 2024, 300(5): 107256[2024-04-02]. https://pubmed.ncbi.nlm.nih.gov/38569937/. DOI: 10.1016/j.jbc.2024.107256.
|
| 20. |
Hirasawa M, Noda K, Noda S, et al. Transcriptional factors associated with epithelial-mesenchymal transition in choroidal neovascularization[J]. Mol Vis, 2011, 17: 1222-1230.
|
| 21. |
Luo K. Signaling cross talk between TGF-β/smad and other signaling pathways[J/OL]. Cold Spring Harb Perspect Biol, 2017, 9(1): a022137[2017-01-03]. https://pubmed.ncbi.nlm.nih.gov/27836834/. DOI: 10.1101/cshperspect.a022137.
|
| 22. |
Klaassen I, van Geest RJ, Kuiper EJ, et al. The role of CTGF in diabetic retinopathy[J]. Exp Eye Res, 2015, 133: 37-48. DOI: 10.1016/j.exer.2014.10.016.
|
| 23. |
Hu B, Zhang Y, Zeng Q, et al. Intravitreal injection of ranibizumab and CTGF shRNA improves retinal gene expression and microvessel ultrastructure in a rodent model of diabetes[J]. Int J Mol Sci, 2014, 15(1): 1606-1624. DOI: 10.3390/ijms15011606.
|
| 24. |
Rossato FA, Su Y, Mackey A, et al. Fibrotic changes and endothelial-to-mesenchymal transition promoted by VEGFR2 antagonism alter the therapeutic effects of VEGFA pathway blockage in a mouse model of choroidal neovascularization[J/OL]. Cells, 2020, 9(9): 2057[2020-09-09]. https://pubmed.ncbi.nlm.nih.gov/32917003/. DOI: 10.3390/cells9092057.
|
| 25. |
Saika S, Kono-Saika S, Tanaka T, et al. Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice[J]. Lab Invest, 2004, 84(10): 1245-1258. DOI: 10.1038/labinvest.3700156.
|
| 26. |
Yang X, Zou R, Dai X, et al. YAP is critical to inflammation, endothelial-mesenchymal transition and subretinal fibrosis in experimental choroidal neovascularization[J/OL]. Exp Cell Res, 2022, 417(2): 113221[2022-08-15]. https://pubmed.ncbi.nlm.nih.gov/35623419/. DOI: 10.1016/j.yexcr.2022.113221.
|
| 27. |
Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways[J]. Science, 2004, 303(5663): 1483-1487. DOI: 10.1126/science.1094291.
|
| 28. |
Wang H, Ramshekar A, Kunz E, et al. 7-ketocholesterol induces endothelial-mesenchymal transition and promotes fibrosis: implications in neovascular age-related macular degeneration and treatment[J]. Angiogenesis, 2021, 24(3): 583-595. DOI: 10.1007/s10456-021-09770-0.
|
| 29. |
Pérez L, Mu?oz-Durango N, Riedel CA, et al. Endothelial-to-mesenchymal transition: cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions[J]. Cytokine Growth Factor Rev, 2017, 33: 41-54. DOI: 10.1016/j.cytogfr.2016.09.002.
|
| 30. |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9): 6425-6440. DOI: 10.1002/jcp.26429.
|
| 31. |
Deng W, Yi C, Pan W, et al. Vascular cell adhesion molecule-1 (VCAM-1) contributes to macular fibrosis in neovascular age-related macular degeneration through modulating macrophage functions[J/OL]. Immun Ageing, 2023, 20(1): 65[2023-11-20]. https://pubmed.ncbi.nlm.nih.gov/37985993/. DOI: 10.1186/s12979-023-00389-x.
|
| 32. |
Chen M, Luo C, Zhao J, et al. Immune regulation in the aging retina[J]. Prog Retin Eye Res, 2019, 69: 159-172. DOI: 10.1016/j.preteyeres.2018.10.003.
|
| 33. |
Sato K, Takeda A, Hasegawa E, et al. Interleukin-6 plays a crucial role in the development of subretinal fibrosis in a mouse model[J]. Immunol Med, 2018, 41(1): 23-29. DOI: 10.1080/09114300.2018.1451609.
|
| 34. |
Szczepan M, Llorián-Salvador M, Yi C, et al. Differential roles of macrophages and microglia in subretinal fibrosis secondary to neovascular age-related macular degeneration[J/OL]. Invest Ophthalmol Vis Sci, 2025, 66(3): 41[2025-03-03]. https://pubmed.ncbi.nlm.nih.gov/40111356/. DOI: 10.1167/iovs.66.3.41.
|
| 35. |
Lechner J, Chen M, Hogg RE, et al. Higher plasma levels of complement C3a, C4a and C5a increase the risk of subretinal fibrosis in neovascular age-related macular degeneration: complement activation in AMD[J/OL]. Immun Ageing, 2016, 13: 4[2016-02-16]. https://pubmed.ncbi.nlm.nih.gov/26884800/. DOI: 10.1186/s12979-016-0060-5.
|
| 36. |
Park DY, Lee J, Kim J, et al. Plastic roles of pericytes in the blood-retinal barrier[J/OL]. Nat Commun, 2017, 8: 15296[2017-05-16]. https://pubmed.ncbi.nlm.nih.gov/28508859/. DOI: 10.1038/ncomms15296.
|
| 37. |
Zhao Z, Zhang Y, Zhang C, et al. TGF-β promotes pericyte-myofibroblast transition in subretinal fibrosis through the Smad2/3 and Akt/mTOR pathways[J]. Exp Mol Med, 2022, 54(5): 673-684. DOI: 10.1038/s12276-022-00778-0.
|
| 38. |
Xu YH, Feng YF, Zou R, et al. Silencing of YAP attenuates pericyte-myofibroblast transition and subretinal fibrosis in experimental model of choroidal neovascularization[J]. Cell Biol Int, 2022, 46(8): 1249-1263. DOI: 10.1002/cbin.11809.
|
| 39. |
Zhang J, Sheng X, Ding Q, et al. Subretinal fibrosis secondary to neovascular age-related macular degeneration: mechanisms and potential therapeutic targets[J]. Neural Regen Res, 2025, 20(2): 378-393. DOI: 10.4103/NRR.NRR-D-23-01642.
|
| 40. |
Jo YJ, Sonoda KH, Oshima Y, et al. Establishment of a new animal model of focal subretinal fibrosis that resembles disciform lesion in advanced age-related macular degeneration[J]. Invest Ophthalmol Vis Sci, 2011, 52(9): 6089-6095. DOI: 10.1167/iovs.10-5189.
|
| 41. |
Adler M, Mayo A, Zhou X, et al. Principles of cell circuits for tissue repair and fibrosis[J/OL]. iScience, 2020, 23(2): 100841[2020-02-21]. https://pubmed.ncbi.nlm.nih.gov/32058955/. DOI: 10.1016/j.isci.2020.100841.
|