| 1. |
Monteiro JP, Santos FM, Rocha AS, et al. Vitreous humor in the pathologic scope: insights from proteomic approaches[J]. Proteomics Clin Appl, 2015, 9(1-2): 187-202. DOI: 10.1002/prca.201400133.
|
| 2. |
Scott JE. The chemical morphology of the vitreous[J]. Eye (Lond), 1992, 6(Pt 6): 553-555. DOI: 10.1038/eye.1992.120.
|
| 3. |
Singh A, Boulton M, Lane C, et al. Inhibition of microvascular endothelial cell proliferation by vitreous following retinal scatter photocoagulation[J]. Br J Ophthalmol, 1990, 74(6): 328-332. DOI: 10.1136/bjo.74.6.328.
|
| 4. |
Purtskhvanidze K, Hillenkamp J, Tode J, et al. Thinning of inner retinal layers after vitrectomy with silicone oil versus gas endotamponade in eyes with macula-off retinal detachment[J]. Ophthalmologica, 2017, 238(3): 124-132. DOI: 10.1159/000477743.
|
| 5. |
Feng X, Li C, Zheng Q, et al. Risk of silicone oil as vitreous tamponade in pars plana vitrectomy: a systematic review and meta-analysis[J]. Retina, 2017, 37(11): 1989-2000. DOI: 10.1097/iae.0000000000001553.
|
| 6. |
Haave H, Petrovski B, Zaj?c M, et al. Outcomes from the retrospective multicenter cross-sectional study on lamellar macular hole surgery[J]. Clin Ophthalmol, 2022, 16: 1847-1860. DOI: 10.2147/opth.S351932.
|
| 7. |
Liu Z, Liow SS, Lai SL, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade[J]. Nat Biomed Eng, 2019, 3(8): 598-610. DOI: 10.1038/s41551-019-0382-7.
|
| 8. |
Singh SR, Dhurandhar D, Chhablani J. Sandwich technique using a combination of perfluoropropane and silicone oil for inferior retinal detachment[J]. Indian J Ophthalmol, 2018, 66(7): 988-990. DOI: 10.4103/ijo.IJO_1294_17.
|
| 9. |
Gao QY, Fu Y, Hui YN. Vitreous substitutes: challenges and directions[J]. Int J Ophthalmol, 2015, 8(3): 437-440. DOI: 10.3980/j.issn.2222-3959.2015.03.01.
|
| 10. |
Gozawa M, Kanamoto M, Ishida S, et al. Evaluation of intraocular gas using magnetic resonance imaging after pars plana vitrectomy with gas tamponade for rhegmatogenous retinal detachment[J/OL]. Sci Rep, 2020, 10(1): 1521[2020-01-30]. https://pubmed.ncbi.nlm.nih.gov/32001793/. DOI: 10.1038/s41598-020-58508-3.
|
| 11. |
Kim SS, Smiddy WE, Feuer WJ, et al. Outcomes of sulfur hexafluoride (SF6) versus perfluoropropane (C3F8) gas tamponade for macular hole surgery[J]. Retina, 2008, 28(10): 1408-1415. DOI: 10.1097/IAE.0b013e3181885009.
|
| 12. |
Giansanti F, Tartaro R, Caporossi T, et al. An internal limiting membrane plug and gas endotamponade for recurrent or persistent macular holeJ/OL]. J Ophthalmol, 2019, 2019: 6051724[2019-04-07]. https://pubmed.ncbi.nlm.nih.gov/30956814/. DOI: 10.1155/2019/6051724.
|
| 13. |
Su X, Tan MJ, Li Z, et al. Recent progress in using biomaterials as vitreous substitutes[J]. Biomacromolecules, 2015, 16(10): 3093-3102. DOI: 10.1021/acs.biomac.5b01091.
|
| 14. |
Yadav I, Purohit SD, Singh H, et al. Vitreous substitutes: an overview of the properties, importance, and development[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(8): 1156-1176. DOI: 10.1002/jbm.b.34778.
|
| 15. |
Marti M, Walton R, B?ni C, et al. Increased intraocular pressure is a risk factor for unexplained visual loss during silicone oil endotamponade[J]. Retina, 2017, 37(12): 2334-2340. DOI: 10.1097/iae.0000000000001492.
|
| 16. |
Davo-Cabrera JM, Lanzagorta-Aresti A, Alcocer Yuste P. A novel surgical technique for ahmed valves in refractory glaucoma with silicone oil endotamponade[J/OL]. J Glaucoma, 2017, 26(10): e232-e235[2017-10-01]. https://pubmed.ncbi.nlm.nih.gov/28816817/. DOI: 10.1097/ijg.0000000000000737.
|
| 17. |
Valentín-Bravo FJ, García-Onrubia L, Andrés-Iglesias C, et al. Complications associated with the use of silicone oil in vitreoretinal surgery: a systemic review and meta-analysis[J/OL]. Acta Ophthalmol, 2022, 100(4): e864-e880[2021-11-29]. https://pubmed.ncbi.nlm.nih.gov/34846097/. DOI: 10.1111/aos.15055.
|
| 18. |
Naik K, Du Toit LC, Ally N, et al. Advances in polysaccharide- and synthetic polymer-based vitreous substitutes[J/OL]. Pharmaceutics, 2023, 15(2): 566[2023-02-08]. https://pubmed.ncbi.nlm.nih.gov/36839888/. DOI: 10.3390/pharmaceutics15020566.
|
| 19. |
Tobalem SJ, Weinberger A, Kropp M, et al. Chorioretinal toxicity of perfluorooctane (Ala OCTA): results from 48 surgical procedures in geneva[J]. Am J Ophthalmol, 2020, 218: 28-39. DOI: 10.1016/j.ajo.2020.05.014.
|
| 20. |
Januschowski K, Irigoyen C, Pastor JC, et al. Retinal toxicity of medical devices used during vitreoretinal surgery: a critical overview[J]. Ophthalmologica, 2018, 240(4): 236-243. DOI: 10.1159/000488504.
|
| 21. |
Qu S, Tang Y, Ning Z, et al. Desired properties of polymeric hydrogel vitreous substitute[J/OL]. Biomed Pharmacother, 2024, 172: 116154[2024-02-01]. https://pubmed.ncbi.nlm.nih.gov/38306844/. DOI: 10.1016/j.biopha.2024.116154.
|
| 22. |
Kopecek J. Hydrogel biomaterials: a smart future?[J]. Biomaterials, 2007, 28(34): 5185-5192. DOI: 10.1016/j.biomaterials.2007.07.044.
|
| 23. |
Wang K, Han Z. Injectable hydrogels for ophthalmic applications[J]. J Control Release, 2017, 268: 212-224. DOI: 10.1016/j.jconrel.2017.10.031.
|
| 24. |
Naik K, du Toit LC, Ally N, et al. In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye[J]. Drug Deliv Transl Res, 2024, 14(10): 2668-2694. DOI: 10.1007/s13346-024-01566-1.
|
| 25. |
Patel DK, Jung E, Priya S, et al. Recent advances in biopolymer-based hydrogels and their potential biomedical applications[J/OL]. Carbohydr Polym, 2024, 323: 121408[2024-01-01]. https://pubmed.ncbi.nlm.nih.gov/37940291/. DOI: 10.1016/j.carbpol.2023.121408.
|
| 26. |
Schnichels S, Schneider N, Hohenadl C, et al. Efficacy of two different thiol-modified crosslinked hyaluronate formulations as vitreous replacement compared to silicone oil in a model of retinal detachment[J/OL]. PLoS One, 2017, 12(3): e0172895[2017-03-01]. https://pubmed.ncbi.nlm.nih.gov/28248989/. DOI: 10.1371/journal.pone.0172895.
|
| 27. |
Baino F. Towards an ideal biomaterial for vitreous replacement: Historical overview and future trends[J]. Acta Biomater, 2011, 7(3): 921-935. DOI: 10.1016/j.actbio.2010.10.030.
|
| 28. |
Liang C, Peyman GA, Serracarbassa P, et al. An evaluation of methylated collagen as a substitute for vitreous and aqueous humor[J]. Int Ophthalmol, 1998, 22(1): 13-18. DOI: 10.1023/a:1006016809070.
|
| 29. |
Nakagawa M, Tanaka M, Miyata T. Evaluation of collagen gel and hyaluronic acid as vitreous substitutes[J]. Ophthalmic Res, 1997, 29(6): 409-420. DOI: 10.1159/000268042.
|
| 30. |
Su WY, Chen KH, Chen YC, et al. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute[J]. J Biomater Sci Polym Ed, 2011, 22(13): 1777-1797. DOI: 10.1163/092050610x522729.
|
| 31. |
Lang L, Hao H, Yao J, et al. Purely zwitterionic polymer injectable hydrogels for vitreous substitutes[J]. Science China Materials, 2025, 68(9): 3390-3400. DOI: 10.1007/s40843-025-3620-x.
|
| 32. |
Hayashi K, Okamoto F, Hoshi S, et al. Fast-forming hydrogel with ultralow polymeric content as an artificial vitreous body[J]. Nat Biomed Eng, 2017, 1(3): 44. DOI: 10.1038/s41551-017-0044.
|
| 33. |
Hurst J, Rickmann A, Heider N, et al. Long-term biocompatibility of a highly viscously thiol-modified cross-linked hyaluronate as a novel vitreous body substitute[J/OL]. Front Pharmacol, 2022, 13: 817353[2022-03-02]. https://pubmed.ncbi.nlm.nih.gov/35308238/. DOI: 10.3389/fphar.2022.817353.
|
| 34. |
Baker AEG, Cui H, Ballios BG, et al. Stable oxime-crosslinked hyaluronan-based hydrogel as a biomimetic vitreous substitute[J/OL]. Biomaterials, 2021, 271: 120750[2021-04-04]. https://pubmed.ncbi.nlm.nih.gov/33725584/. DOI: 10.1016/j.biomaterials.2021.120750.
|
| 35. |
Yu S, Wang S, Xia L, et al. Injectable self-crosslinking hydrogels based on hyaluronic acid as vitreous substitutes[J]. Int J Biol Macromol, 2022, 208: 159-171. DOI: 10.1016/j.ijbiomac.2022.03.046.
|
| 36. |
Ran R, Shi W, Gao Y, et al. Super-fast in situ formation of hydrogels based on multi-arm functional polyethylene glycols as endotamponade substitutes[J]. J Mater Chem B, 2021, 9(44): 9162-9173. DOI: 10.1039/d1tb01825f.
|
| 37. |
He B, Yang J, Liu Y, et al. An in situ-forming polyzwitterion hydrogel: towards vitreous substitute application[J]. Bioact Mater, 2021, 6(10): 3085-3096. DOI: 10.1016/j.bioactmat.2021.02.029.
|
| 38. |
Cai Y, Tan Y, Cao J, et al. Dual-crosslinked betaine-based amphiphilic hydrogel as a promising vitreous substitute: anti-adhesion, anti-fouling, and anti-cell proliferation[J/OL]. Adv Sci (Weinh), 2025: e13455[2025-06-30]. https://pubmed.ncbi.nlm.nih.gov/40586226/. DOI: 10.1002/advs.202413455.
|
| 39. |
Wang S, Ong P J, Liu S, et al. Recent advances in host-guest supramolecular hydrogels for biomedical applications[J/OL]. Chem Asian J, 2022, 17(18): e202200608[2022-09-14]. https://pubmed.ncbi.nlm.nih.gov/35866560/. DOI: 10.1002/asia.202200608.
|
| 40. |
Xue K, Liu Z, Jiang L, et al. A new highly transparent injectable PHA-based thermogelling vitreous substitute[J]. Biomater Sci, 2020, 8(3): 926-936. DOI: 10.1039/c9bm01603a.
|
| 41. |
Schulz A, Keskar M, Swindle-Reilly KE, et al. Replacing the vitreous body with hydrogels: rationale and strategies[J/OL]. Prog Retin Eye Res, 2025, 108: 101389[2025-07-09]. https://pubmed.ncbi.nlm.nih.gov/40645475/. DOI: 10.1016/j.preteyeres.2025.101389.
|
| 42. |
Jin Y, Li Y, Song S, et al. DNA supramolecular hydrogel as a biocompatible artificial vitreous substitute[J]. Adv Mater Interfaces, 2021, 9(5): .1-9. DOI: 10.1002/admi.202101321.
|
| 43. |
Cai Y, Xiang Y, Dong H, et al. Injectable self-assembling peptide hydrogel as a promising vitreous substitute[J]. J Control Release, 2024, 376: 402-412. DOI: 10.1016/j.jconrel.2024.10.016.
|
| 44. |
Choi G, An SH, Choi J W, et al. Injectable alginate-based in situ self-healable transparent hydrogel as a vitreous substitute with a tamponading function[J/OL]. Biomaterials, 2024, 305: 122459[2024-01-01]. https://pubmed.ncbi.nlm.nih.gov/38199216/. DOI: 10.1016/j.biomaterials.2023.122459.
|
| 45. |
Schulz A, Boneva SK, Lange C, et al. Tissue engineering of the vitreous body: recent progress and future trends[J]. Curr Opin Ophthalmol, 2025, 36(3): 262-269. DOI: 10.1097/icu.0000000000001125.
|
| 46. |
Yadav I, Purohit SD, Singh H, et al. Meropenem loaded 4-arm-polyethylene-succinimidyl-carboxymethyl ester and hyaluronic acid based bacterial resistant hydrogel[J/OL]. Int J Biol Macromol, 2023, 235: 123842[2023-04-30]. https://pubmed.ncbi.nlm.nih.gov/36854369/. DOI: 10.1016/j.ijbiomac.2023.123842.
|
| 47. |
Chen HA, Tai YN, Hsieh EH, et al. Injectable cross-linked hyaluronic acid hydrogels with epigallocatechin gallate loading as vitreous substitutes[J/OL]. Int J Biol Macromol, 2024, 275(Pt1): 133467[2024-06-28]. https://pubmed.ncbi.nlm.nih.gov/38945319/. DOI: 10.1016/j.ijbiomac.2024.133467.
|
| 48. |
Naik K, du Toit LC, Ally N, et al. In vivo evaluation of a Nano-enabled therapeutic vitreous substitute for the precise delivery of triamcinolone to the posterior segment of the eye[J]. Drug Deliv Transl Res, 2024, 14(10): 2668-2694. DOI: 10.1007/s13346-024-01566-1.
|