| 1. |
MCKUSICK V A. Mendelian inheritance in man and its online version, OMIM[J]. Am J Hum Genet, 2007, 80(4):588-604.
|
| 2. |
VAN DRIEL M A, BRUGGEMAN J, VRIEND G, et al. A text-mining analysis of the human phenome[J]. Eur J Hum Genet, 2006, 14(5):535-542.
|
| 3. |
ZHANG S H, WU C, LI X, et al. From phenotype to gene:detecting disease-specific gene functional modules via a text-based human disease phenotype network construction[J]. FEBS Lett, 2010, 584(16):3635-3643.
|
| 4. |
ROBINSON P N, MUNDLOS S. The human phenotype ontology[J]. Clin Genet, 2010, 77(6):525-534.
|
| 5. |
BECK T, FREE R C, THORISSON G A, et al. Semantically enabling a genome-wide association study database[J]. J Biomed Semantics, 2012, 3(1):9.
|
| 6. |
COHEN R, GEFEN A, ELHADAD M, et al. CSI-OMIM——Clinical synopsis search in OMIM[J]. BMC Bioinformatics, 2011, 12:65.
|
| 7. |
OELLRICH A, GKOUTOS G V, HOEHNDORF R, et al. Quantitative comparison of mapping methods between Human and Mammalian Phenotype Ontology[J]. J Biomed Semantics, 2012, 3(Suppl 2):S1.
|
| 8. |
OELLRICH A, HOEHNDORF R, GKOUTOS G V, et al. Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases[J]. PLoS One, 2012, 7(6):e38937.
|
| 9. |
GROZA T, HUNTER J, ZANKL A. Supervised segmentation of phenotype descriptions for the human skeletal phenome using hybrid methods[J]. BMC Bioinformatics, 2012, 13:265.
|
| 10. |
K?HLER S, DOELKEN S C, RATH A, et al. Ontological phenotype standards for neurogenetics[J]. Hum Mutat, 2012, 33(9):1333-1339.
|
| 11. |
HWANG T, ATLURI G, XIE M Q, et al. Co-clustering phenome-genome for phenotype classification and disease gene discovery[J]. Nucleic Acids Res, 2012, 40(19):e146.
|
| 12. |
HOEHNDORF R, SCHOFIELD P N, GKOUTOS G V. PhenomeNET:a whole-phenome approach to disease gene discovery[J]. Nucleic Acids Res, 2011, 39(18):e119.
|
| 13. |
ZHANG S Z, CHANG Z Q, LI Z Q, et al. Calculating phenotypic similarity between genes using hierarchical structure data based on semantic similarity[J]. Gene, 2012, 497(1):58-65.
|
| 14. |
OTI M, HUYNEN M A, BRUNNER H G. The biological coherence of human phenome databases[J]. Am J Hum Genet, 2009, 85(6):801-808.
|
| 15. |
GEFEN A, COHEN R, BIRK O S. Syndrome to gene (S2G):in-silico identification of candidate genes for human diseases[J]. Hum Mutat, 2010, 31(3):229-236.
|
| 16. |
PATHAK J, KIEFER R C, FREIMUTH R R, et al. Validation and discovery of genotype-phenotype associations in chronic diseases using linked data[J]. Stud Health Technol Inform, 2012, 180:549-553.
|
| 17. |
王志剛,謝麗芳,陳鑫,等.基于語義的疾病表型相似性[J].生物信息學,2012,10(3):154-157.
|
| 18. |
CHEN H L, ZHANG Z P. Prediction of associations between OMIM diseases and microRNAs by random walk on OMIM disease similarity network[J]. The Scientific World Journal, 2013, 2013:Article ID 204658.
|
| 19. |
CHEN C M, CHEN C C, SHIH T H, et al. Efficient algorithms for identifying orthologous simple sequence repeats of disease genes[J]. J Syst Sci Complex, 2010, 23(5):906-916.
|
| 20. |
WU X B, LIU Q F, JIANG R. Align human interactome with phenome to identify causative genes and networks underlying disease families[J]. Bioinformatics, 2009, 25(1):98-104.
|
| 21. |
VANUNU O, MAGGER O, RUPPIN E, et al. Associating genes and protein complexes with disease via network propagation[J]. PLoS Comput Biol, 2010, 6(1):e1000641.
|
| 22. |
ERTEN S, BEBEK G, EWING R M, et al. DADA:Degree-aware algorithms for network-based disease gene prioritization[J]. BioData Min, 2011, 4:19.
|
| 23. |
LI Y J, PATRA J C. Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network[J]. Bioinformatics, 2010, 26(9):1219-1224.
|
| 24. |
ERTEN S, BEBEK G, KOYUT?RK M. Vavien:an algorithm for prioritizing candidate disease genes based on topological similarity of proteins in interaction networks[J]. J Comput Biol, 2011, 18(11):1561-1574.
|
| 25. |
NAKAZATO T, BONO H, MATSUDA H, et al. Gendoo:functional profiling of gene and disease features using MeSH vocabulary[J]. Nucleic Acids Res, 2009, 37(Suppl 2):W166-W169.
|