| 1. |
HODGKIN A L, HUXLEY A F. Current carried by sodium and potassium ions though the membrane of the giant axon of Loligo[J]. Journal of Physiology, 1952, 116(4):449-472.
|
| 2. |
HODGKIN A L, HUXLEY A F. The components of membrane conductance in the giant axon of Loligo[J]. Journal of Physiology, 1952, 116(4):473-496.
|
| 3. |
HODGKIN A L, HUXLEY A F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo[J]. Journal of Physiology, 1952, 116(4):497-506.
|
| 4. |
HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve[J]. Journal of Physiology, 1952, 117(4):500-544.
|
| 5. |
BAZSO F, ZALANYI L, CSARDI G. Channel noise in Hodgkin-Huxley model neurons[J]. Physics Letters A, 2003, 311(1):13-20.
|
| 6. |
NABI A, MOEHLIS J. Single input optimal control for globally coupled neuron networks[J]. Journal of Neural Engineering, 2011, 8(6):065008.
|
| 7. |
于海濤, 王江, 劉晨等.耦合小世界神經網絡的隨機共振[J].物理學報, 2012, 61(6):485-491.
|
| 8. |
DORUK R O. Control of repetitive firing in Hodgkin-Huxley nerve fibers using electric fields[J]. Chaos Solitons Fractals, 2013, 52:66-72.
|
| 9. |
YAGHINI BONABI S, ASGHARIAN H, SAFARI S, et al. FPGA implementation of a biological neural network based on the Hodgkin-Huxley neuron model[J]. Frontiers in Neuroscience, 2014, 8:379.
|
| 10. |
GRASSIA F, LEVI T, KOHNO T, et al. Silicon neuron:digital hardware implementation of the quartic model[J]. Artificial Life and Robotics, 2014, 19(3):215-219.
|
| 11. |
LABIB R, AUDETTE F, FORTIN A, et al. Hardware implementation of a new artificial neuron[J]. International Journal of Neural Systems, 2005, 15(6):427-433.
|
| 12. |
TIGAERU L, BONTERNU G. A neuron model for FPGA spiking neuronal network implementation[J]. Aavances in Electrical and Computer Engineering, 2011, 11(4):29-36.
|
| 13. |
陳軍, 李春光.具有自適應反饋突觸的神經元模型中的混沌:電路設計[J].物理學報, 2011, 60(5):77-84.
|
| 14. |
DABROWSKI D, JAMRO E, CIOCH W. Hardware implementation of artificial neural networks for vibroacoustic signals classification[J]. Acta Physica Polonica A, 2010, 118(1):41-44.
|
| 15. |
MEAD C A. Analog VLSI and neural systems[M]. Reading.MA:Addison-Wesley, 1989.
|
| 16. |
MAHOWALD M, DOUGLAS R. A silicon neuron[J]. Nature, 1991, 354(6354):515-518.
|
| 17. |
TOUMAZOU C, DRAKAKIS E M, GEORGIOU J. Current-mode analogue circuit representation of Hodgkin and Huxley neuron equations[J]. Electronics Letters, 1998, 34(14):1376-1377.
|
| 18. |
FOLOWOSELE F, HAMILTON T J, ETIENNE-CUMMINGS R. Silicon modeling of the Mihalas-Niebur neuron[J]. IEEE Transactions on Neural Networks, 2011, 22(12):1915-1927.
|
| 19. |
GRAAS E L, BROWN E, LEE R H. An FPGA-based approach to high-speed simulation of conductance-based neuron models[J]. Neuroinformatics, 2004, 2(4):417-435.
|
| 20. |
WEINSTEIN R K, LEE R H. Architectures for high-performance FPGA implementations of neural models[J]. Journal of Neural Engineering, 2006, 3:21-34.
|
| 21. |
WEINSTEIN R K, REID M S, LEE R H. Methodology and design flow for assisted neural model implementations in FPGAs[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(1):83-93.
|
| 22. |
張榮華, 王江.FPGA在生物神經系統模型仿真中的應用[J].計算機應用研究, 2011, 28(8):2949-2953.
|
| 23. |
張榮華, 王江.神經元網絡的FPGA硬件仿真方法[J].計算機應用研究, 2011, 28(10):3707-3710.
|
| 24. |
謝明文.關于協方差、相關系數與相關性的關系[J].數理統計與管理, 2004, 44(4):33-37.
|