| 1. |
楊正漢, 馮逢, 王霄英. 磁共振成像技術指南——檢查規范、臨床策略及新技術應用. 北京: 人民軍醫出版社, 2013: 550-557.
|
| 2. |
Donoho D L. Compressed sensing. IEEE Trans Inf Theory, 2006, 52(4): 1289-1306.
|
| 3. |
Candes E J, Romberg J K, Tao T. Stable signal recovery from incomplete and inaccurate measurements. Commun Pure Appl Math, 2006, 59(8): 1207-1223.
|
| 4. |
Candes E J, Romberg J K, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2006, 52(2): 489-509.
|
| 5. |
Candes E J, Recht B. Exact matrix completion via convex optimization. Found Comput Math, 2009, 9(6): 717-772.
|
| 6. |
Candes E J, Tao T. The power of convex relaxation: near-optimal matrix completion. IEEE Trans Inf Theory, 2010, 56(5): 2053-2080.
|
| 7. |
Yang A C, Kretzler M, Sudarski S, et al. Sparse reconstruction techniques in magnetic resonance imaging: methods, applications, and challenges to clinical adoption. Invest Radiol, 2016, 51(6): 349-364.
|
| 8. |
Axel L, Otazo R. Accelerated MRI for the assessment of cardiac function. Brit J Radiol, 2016, 89(1063): 20150655.
|
| 9. |
Otazo R, Candes E, Sodickson D K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med, 2015, 73(3): 1125-1136.
|
| 10. |
陳思吉, 楊曉梅, 呂雪霜. 基于稀疏和低秩先驗分離的快速動態 MRI 重建. 計算機應用研究, 2016, 33(10): 3196-3200.
|
| 11. |
Yao Jiawen, Xu Zheng, Huang Xiaolei, et al. Accelerated dynamic MRI reconstruction with total variation and nuclear norm regularization// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI 2015). Munich, Germany: Springer International Publishing, 2015: 635-642.
|
| 12. |
Ulas C, Gomez P A, Sperl J I, et al. Spatio-temporal MRI reconstruction by enforcing local and global regularity via dynamic total variation and nuclear norm minimization// 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). Prague, Czech Republic: IEEE, 2016: 306-309.
|
| 13. |
陳長偉, 朱俊. 基于低秩和稀疏性先驗知識的壓縮感知圖像重構. 計算機應用研究, 2017, 34(3): 949-952.
|
| 14. |
Dong Weisheng, Shi Guangming, Li Xin, et al. Compressive sensing via nonlocal low-rank regularization. IEEE Trans Image Proc, 2014, 23(8): 3618-3632.
|
| 15. |
Sun L, Chen J, Zhang X P, et al. Patch-based nonlocal dynamic MRI reconstruction with low-rank prior//2015 IEEE 17th International Workshop on Multimedia Signal Processing (MMSP). Xiamen: IEEE, 2015: 1-6.
|
| 16. |
Dankova M, Rajmic P, Jirik R. Acceleration of perfusion MRI using locally low-rank plus sparse model//International Conference on Latent Variable Analysis and Signal Separation. Liberec, Czech Republic: Springer International Publishing, 2015: 514-521.
|
| 17. |
Yu Yeyang, Jin Jin, Liu Feng, et al. Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform. PLoS One, 2014, 9(6): e98441.
|
| 18. |
Roohi S F, Zonoobi D, Kassim A A, et al. Dynamic MRI reconstruction using low rank plus sparse tensor decomposition//2016 IEEE International Conference on Image Processing (ICIP). Phoenix, AZ, USA: IEEE, 2016: 1769-1773.
|
| 19. |
Zhang Xiaoyong, Xie Guoxi, Shi Caiyun, et al. Accelerating PS model-based dynamic cardiac MRI using compressed sensing. Magn Reson Imaging, 2016, 34(2): 81-90.
|
| 20. |
Ong F, Lustig M. Beyond low rank plus sparse: multiscale low rank matrix decomposition. IEEE J Sel Top Signal Process, 2016, 10(4): 672-687.
|
| 21. |
Roohi S F, Zonoobi D, Kassim A A. Multi-dimensional low rank plus sparse decomposition for reconstruction of under-sampled dynamic MRI. Pattern Recognit, 2017, 63(3): 667-679.
|
| 22. |
Jung H, Sung K, Nayak K S, et al. k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med, 2009, 61(1): 103-116.
|
| 23. |
Jung H, Ye J C. Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: what we can learn from video compression techniques. Int J Imaging Syst Technol, 2010, 20(2, SI): 81-98.
|
| 24. |
Kim D, Dyvorne H A, Otazo R, et al. Accelerated phase-contrast cine MRI using k-t sparse-sense. Magn Reson Med, 2012, 67(4): 1054-1064.
|
| 25. |
Feng Li, Grimm R, Block K T, et al. Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med, 2014, 72(3): 707-717.
|