| 1. |
Baust J G, Gao Dayong, Baust J M. Cryopreservation: An emerging paradigm change. Organogenesis, 2009, 5(3): 90-96.
|
| 2. |
Lovelock J E, Bishop M W. Prevention of freezing damage to living cells by dimethyl sulphoxide. Nature, 1959, 183(4672): 1394-1395.
|
| 3. |
Guillouzo A, Rialland L, Fautrel A, et al. Survival and function of isolated hepatocytes after cryopreservation. Chem Biol Interact, 1999, 121(1): 7-16.
|
| 4. |
Nagahara Y, Sekine H, Otaki M, et al. Use of high concentrations of dimethyl sulfoxide for cryopreservation of HepG2 cells adhered to glass and polydimethylsiloxane matrices. Cryobiology, 2016, 72(1): 53-59.
|
| 5. |
李佳佳, 程騰, 賀小英, 等. 二甲基亞砜和胎牛血清對293T細胞冷凍效果的影響. 信陽師范學院學報:自然科學版, 2013, 26(2): 217-220.
|
| 6. |
Hunter N, Foster J, Chong A, et al. Transmission of prion diseases by blood transfusion. J Gener Virol, 2002, 83(Pt 11): 2897-2905.
|
| 7. |
睢曉潔, 潘超, 楊靜, 等. 以氧化三甲胺作為細胞凍存保護劑的研究. 中國科技論文, 2017, 12(12): 1341-1345.
|
| 8. |
滕蕓. 基于蠶絲蛋白的低溫保護劑的研究. 上海: 上海理工大學, 2018.
|
| 9. |
Halwani D O, Brockbank K G, Duman J G, et al. Recombinant Dendroides canadensis antifreeze proteins as potential ingredients in cryopreservation solutions. Cryobiology, 2014, 68(3): 411-418.
|
| 10. |
Sun K H, Jung K E, Won Y H, et al. Improvement in ovarian tissue quality with supplementation of antifreeze protein during warming of vitrified mouse ovarian tissue. Yonsei Med J, 2018, 59(2): 331-336.
|
| 11. |
Rubinsky B, Arav A, Mattioli M, et al. The effect of antifreeze glycopeptides on membrane potential changes at hypothermic temperatures. Biochem Biophys Res Commun, 1990, 173(3): 1369-1374.
|
| 12. |
Arav A, Rubinsky B, Fletcher G, et al. Cryogenic protection of oocytes with antifreeze proteins. Mol Reproduct Dev, 1993, 36(4): 488-493.
|
| 13. |
Carpenter J F, Hansent T N. Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc Natl Acad Sci U S A, 1992, 89(19): 8953-8957.
|
| 14. |
Amir G, Horowitz L, Rubinsky B, et al. Subzero nonfreezing cryopresevation of rat hearts using antifreeze protein I and antifreeze protein III. Cryobiology, 2004, 48(3): 273-282.
|
| 15. |
馬慶保, 劉志東. 南極磷蝦抗凍蛋白熱滯活性的差示掃描量熱法評價. 食品科學, 2018, 39(11): 1-7.
|
| 16. |
紀瑞慶, 劉愛國, 陳龍, 等. 魚類抗凍蛋白結構與抗凍活性的關系. 食品科學, 2015, 36(5): 274-282.
|
| 17. |
Mao Xinfang, Liu Zhongyuan, Li Honglei, et al. Calorimetric studies on an insect antifreeze protein ApAFP752 from Anatolica polita. J Therm Anal Calorim, 2011, 104(1): 343-349.
|
| 18. |
張換成, 胥義. 深低溫保存生物材料快速復溫方法的研究進展. 中國醫學物理學雜志, 2015, 32(1): 144-148.
|
| 19. |
Tomczak M M, Marshall C B, Gilbert J A, et al. A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochem Biophys Res Commun, 2003, 311(4): 1041-1046.
|
| 20. |
Cao Tingting, Zhang Yuqing. Processing and characterization of silk sericin from Bombyx mori and its application in biomaterials and biomedicines. Mater Sci Eng C Mater Biol Appl, 2016, 61: 940-952.
|
| 21. |
Rockwood D N, Preda R C, Yücel T, et al. Materials fabrication from Bombyx mori silk fibroin. Nat Protoc, 2011, 6(10): 1612-1631.
|
| 22. |
尉姍姍, 尹林克, 牟書勇, 等. 新疆沙冬青抗凍蛋白的提取分離及其熱滯活性測定. 云南植物研究, 2007, 29(2): 251-255.
|
| 23. |
Stubbs C, Lipecki J, Gibson M I. Regioregular alternating polyampholytes have enhanced biomimetic ice recrystallization activity compared to random copolymers and the role of side chain versus main chain hydrophobicity. Biomacromolecules, 2017, 18(1): 295-302.
|
| 24. |
Jia Chunli, Huang Weining, Wu Chao, et al. Characterization and yeast cryoprotective performance for thermostable icestructuring proteins from Chinese Privet (Ligustrum Vulgare) leaves. Food Research International, 2012, 49(1): 280-284.
|
| 25. |
Wu Jinhong, Zhou Yanfu, Wang Shaoyun, et al. Laboratory-scale extraction and characterization of ice-binding sericin peptides. Eur Food Res Technol, 2013, 236(4): 637-646.
|
| 26. |
任禾盛, 許娜飛, 華澤釗. 抗凍蛋白活性的差示掃描量熱測定及其吸附-抑制機制. 細胞生物學雜志, 2004, 26(4): 413-416.
|
| 27. |
Du N, Liu X Y, Hew C L. Ice nucleation inhibition: mechanism of antifreeze by antifreeze protein. J Biol Chem, 2003, 278(38): 36000-36004.
|
| 28. |
Raymond J A, DeVries A L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A, 1977, 74(6): 2589-2593.
|
| 29. |
Li Ling, Wu Jinhong, Zhang Li, et al. Investigation of the physiochemical properties, cryoprotective activity and possible action mechanisms of sericin peptides derived frommembrane separation. LWT, 2017, 77: 532-541.
|
| 30. |
Gupta D, Agrawal A, Chaudhary H, et al. Cleaner process for extraction of sericin using infrared. J Clean Prod, 2013, 52(4): 488-494.
|
| 31. |
周小進, 董雪. 不同脫膠方法對蠶絲性能的影響分析. 針織工業, 2013(4): 44-48.
|
| 32. |
Zhang D Q, Liu B, Feng D R, et al. Significance of conservative asparagine residues in the thermal hysteresis activity of carrot antifreeze protein. Biochem J, 2004, 377(3): 589-595.
|
| 33. |
Wierzbicki A, Madura J D, Salmon C, et al. Modeling studies of binding of sea raven type II antifreeze protein to ice. J Chem Inf Comput Sci, 1997, 37(6): 1006-1010.
|