| 1. |
王行愚, 金晶, 張宇, 等. 腦控: 基于腦-機接口的人機融合控制. 自動化學報, 2013, 39(3): 208-221.
|
| 2. |
Li Wenyu, Feng Duan, Sheng Shili, et al. A human-vehicle collaborative simulated driving system based on hybrid brain-computer interfaces and computer vision. IEEE Trans Cogn Dev Sys, 2018, 10(3): 810-822.
|
| 3. |
Allison B Z, Wolpaw E W, Wolpaw J R. Brain-computer interface systems: progress and prospects. Expert Rev Med Devices, 2007, 4(4): 463-474.
|
| 4. |
Qu Jun, Wang Fei, Xia Zhenping, et al. A novel three-dimensional P300 speller based on stereo visual stimuli. IEEE Trans Hum-Mach Syst, 2018, 48(4): 392-399.
|
| 5. |
王欣, 靳靜娜, 李松, 等. 厭惡與悲傷情境圖片誘發負性情緒的腦電機制差異探索. 生物醫學工程學雜志, 2015, 32(6): 1165-1172.
|
| 6. |
Omedes J, Schwarz A, Müller-Putz G R, et al. Factors that affect error potentials during a grasping task: toward a hybrid natural movement decoding BCI. J Neural Eng, 2018, 15(4): 046023.
|
| 7. |
魏景漢, 羅躍嘉. 事件相關電位原理與技術. 北京: 科學出版社, 2010.
|
| 8. |
Sutton S, Braren M, Zubin J. Evoked potential correlates of stimulus uncertainty. Los Angeles: American Psychological Association, 1964: 1-8.
|
| 9. |
Patel S H, Azzam P N. Characterization of N200 and P300: selected studies of the event-related potential. Int J Med Sci, 2005, 2(4): 147-154.
|
| 10. |
范曉麗, 趙朝義, 羅虹, 等. 基于 2-back 任務下 ERP 特征的腦力疲勞客觀評價研究. 生物醫學工程學雜志, 2018, 35(6): 837-844.
|
| 11. |
Palankar M, De Laurentis K J, Alqasemi R, et al. Control of a 9-DoF wheelchair-mounted robotic arm system using a P300 brain computer interface: initial experiments// IEEE International Conference on Robotics and Biomimetics. Guilin: IEEE, 2009: 348-353.
|
| 12. |
Iturrate I, Antelis J M, Kubler A, et al. A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans Robot, 2009, 25(3): 614-627.
|
| 13. |
Li Mengfan, Li Wei, Niu Linwei, et al. An event-related potential-based adaptive model for telepresence control of humanoid robot motion in an environment with cluttered obstacles. IEEE Trans Ind Electron, 2017, 64(2): 1696-1705.
|
| 14. |
Jin Jing, Allison B Z, Wang Xingyu, et al. A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. J Neurosci Methods, 2012, 205(2): 265-276.
|
| 15. |
Gonsalvez C J, Barry R J, Rushby J A, et al. Target-to-target interval, intensity, and P300 from an auditory single-stimulus task. Psychophysiology, 2007, 44(2): 245-250.
|
| 16. |
Allison B Z, Pineda J A. Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: implications for a BCI system. Int J Psychophysiol, 2006, 59(2): 127-140.
|
| 17. |
馬忠偉, 高上凱. 基于 P300 的腦-機接口: 視覺刺激強度對性能的影響. 清華大學學報:自然科學版, 2008, 48(3): 415-418.
|
| 18. |
Allison B Z, Pineda J A. ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Syst Rehabil Eng, 2003, 11(2): 110-113.
|
| 19. |
Zhang Dan, Song Huaying, Xu Rui, et al. Toward a minimally invasive brain-computer interface using a single subdural channel: a visual speller study. Neuroimage, 2013, 71(5): 30-41.
|
| 20. |
Holz E M, Botrel L, Kaufmann T, et al. Long-term Independent brain-computer interface home use improves quality of life of a patient in the locked-in state: a case study. Arch Phys Med Rehabil, 2015, 96(3 Suppl): S16-S26.
|
| 21. |
Jin Jing, Sellers E W, Zhou Sijie, et al. A P300 brain-computer interface based on a modification of the mismatch negativity paradigm. Int J Neural Syst, 2015, 25(3): 595-599.
|
| 22. |
Kosonogov V, Martinez-Selva J, Carrillo-Verdejo, et al. Effects of social and affective content on exogenous attention as revealed by event-related potentials. Cogn Emot, 2019, 33(4): 683-695.
|
| 23. |
李玥. 基于圖像信息的簡單圖形與復雜視覺場景認知過程研究. 昆明: 云南大學, 2013.
|
| 24. |
Bradley M M, Hamby S, L?w A, et al. Brain potentials in perception: picture complexity and emotional arousal. Psychophysiology, 2007, 44(3): 364-373.
|
| 25. |
Li Mengfan, Li Wei, Zhou Huihui. Increasing N200 potentials via visual stimulus depicting humanoid robot behavior. Int J Neural Syst, 2016, 26(1): 1-16.
|
| 26. |
Zhang Xukun, Zhang Zhenhao, Zhang Zhijun, et al. The role of the motion cue in the dynamic gaze-cueing effect: A study of the lateralized ERPs. Neuropsychologia, 2019, 124: 151-160.
|
| 27. |
Hirai M, Fukushima H, Hiraki K. An event-related potentials study of biological motion perception in humans. Neurosci Lett, 2003, 344(1): 41-44.
|
| 28. |
Zarka D, Cevallos C, Petieau M, et al. Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations. Front Syst Neurosci, 2014, 8: 1-19.
|
| 29. |
Hietanen J K, Lepp?nen J M, Nummenmaa L, et al. Visuospatial attention shifts by gaze and arrow cues: an ERP study. Brain Res, 2008, 1215(2): 123-136.
|
| 30. |
Beaucousin V, Cassotti M, Simon G, et al. ERP evidence of a meaningfulness impact on visual global/local processing: When meaning captures attention. Neuropsychologia, 2011, 49(5): 1258-1266.
|
| 31. |
Gunter T C, Bach P. Communicating hands: ERPs elicited by meaningful symbolic hand postures. Neurosci Lett, 2004, 372(1/2): 52-56.
|
| 32. |
Potter MC. Short-term conceptual memory for pictures. J Exp Psychol, 1976, 2(5): 509-522.
|
| 33. |
Proverbio A M, Riva F. RP and N400 ERP components reflect semantic violations in visual processing of human actions. Neurosci Lett, 2009, 459(3): 142-146.
|
| 34. |
Yin Erwei, Zeyl T, Saab R, et al. An auditory-tactile visual saccade-independent P300 brain-computer interface. Int J Neural Syst, 2016, 26(1): 1650001.
|
| 35. |
Li J, Ji H, Cao L, et al. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom. Int J Neural Syst, 2014, 24(4): 1450014.
|
| 36. |
Erdogan SB, Ozsarfati E, Dilek B, et al. Classification of motor imagery and execution signals with population-level feature sets: implications for probe design in fNIRS based BCI. J Neural Eng, 2019, 16(2): 026029.
|
| 37. |
Rakotomamonjy A, Guigue V. BCI competition III: dataset II-ensemble of SVMs for BCI P300 speller. IEEE Trans Biomed Eng, 2008, 55(3): 1147-1154.
|
| 38. |
Sereshkeh A, Trott R, Bricout A, et al. Online EEG classification of covert speech for brain-computer interfacing. Int J Neural Syst, 2017, 27(8): 1750033.
|
| 39. |
Wittevrongel B, Van Wolputte E, Van Hulle M M. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding. Sci Rep, 2017, 7(1): 15037.
|
| 40. |
Li Wei, Li Mengfan, Zhou Huihui, et al. A dual stimuli approach combined with convolutional neural network to improve information transfer rate of event-related potential-based brain-computer interface. Int J Neural Syst, 2018, 28(10): 1850034.
|
| 41. |
王金甲, 楊成杰, 胡備. P300 腦機接口控制智能小車系統的設計與實現. 生物醫學工程學雜志, 2013, 30(2): 223-228.
|
| 42. |
Bechtold L, Bellebaum C, Egan S A, et al. The role of experience for abstract concepts: Expertise modulates the electrophysiological correlates of mathematical word processing. Brain Lang, 2019, 188: 1-10.
|
| 43. |
Martin-Loeches M, Sommer W, Hinojosa J A. ERP components reflecting stimulus identification: contrasting the recognition potential and the early repetition effect (N250r). Int J Psychophysiol, 2005, 55(1): 113-125.
|
| 44. |
Merri?nboer J J G V, Sweller J. Cognitive load theory in health professional education: design principles and strategies. Med Educ, 2010, 44(1): 85-93.
|
| 45. |
Hollender N, Hofmann C, Deneke M, et al. Integrating cognitive load theory and concepts of human-computer interaction. Comput Hum Behav, 2010, 26(6): 1278-1288.
|