| 1. |
Boeder N F, Weissner M, Blachutzik F, et al. Incidental finding of strut malapposition is a predictor of late and very late thrombosis in coronary bioresorbable scaffolds. J Clin Med, 2019, 8(5): 580-592.
|
| 2. |
張弘宇. 支架晚期貼壁不良的研究進展. 現代醫學與健康研究, 2018, 2(11): 165.
|
| 3. |
R?ber L, Mintz G S, Koskinas K C, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. an expert consensus document of the european association of percutaneous cardiovascular interventions. EuroIntervention, 2018, 14(6): 656-677.
|
| 4. |
Cook S, Wenaweser P, Togni M, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation, 2007, 115(18): 2426-2434.
|
| 5. |
Finn A V, Joner M, Nakazawa G, et al. Pathological correlates of late drug-eluting stent thrombosis-strut coverage as a marker of endothelialization. Circulation, 2007, 115(18): 2435-2441.
|
| 6. |
Leone A M, Rebuzzi A G, Burzotta F, et al. Stent malapposition, strut coverage and atherothrombotic prolapse after percutaneous coronary interventions in ST-segment elevation myocardial infarction. J Cardiovasc Med (Hagerstown), 2019, 20(3): 122-130.
|
| 7. |
Giglioli C, Formentini C, Romano S M, et al. Vulnerable struts with CRE8, Biomatrix and Xience stents assessed with OCT and their correlation with clinical variables at 6-month follow-up: the CREBX-OCT study. Int J Cardiovasc Imaging, 2020, 36(2): 217-230.
|
| 8. |
Taniwaki M, Radu M D, Zaugg S, et al. Mechanisms of very late drug-eluting stent thrombosis assessed by optical coherence tomography. Circulation, 2016, 133(7): 650-660.
|
| 9. |
Mishra S. Structural and design evolution of bio-resorbable scaffolds: the journey so far. Curr Pharm Des, 2018, 24(4): 402-413.
|
| 10. |
Hyt?nen J P, Taavitsainen J, Tarvainen S, et al. Biodegradable coronary scaffolds: their future and clinical and technological challenges. Cardiovasc Res, 2018, 114(8): 1063-1072.
|
| 11. |
彭坤, 李婧, 王斯睿, 等. 可降解血管支架結構設計及優化的研究進展. 中國生物醫學工程學報, 2019, 38(3): 367-374.
|
| 12. |
郭同彤, 萬超杰. 一種梭型血管支架: 中國, CN208511271U. 2019-02-19.
|
| 13. |
張永順, 張鴻坤, 趙渝, 等. 一種斜口結構狀血管支架: 中國, CN210811780U. 2020-06-23.
|
| 14. |
潘寧, 趙渝, 張鴻坤, 等. 一種彎曲式血管支架: 中國, CN110368159A. 2020-07-14.
|
| 15. |
Xia Z, Feng J, Sasaki K. A general finite element analysis method for balloon expandable stents based on repeated unit cell (RUC) model. Finite Elements in Analysis and Design, 2007, 43(8): 649-658.
|
| 16. |
任慶帥. 血管支架擴張的有限元分析研究. 北京: 北京工業大學, 2016.
|
| 17. |
Brown J, O'Brien C C, Lopes A C, et al. Quantification of thrombus formation in malapposed coronary stents deployed in vitro through imaging analysis. J Biomech, 2018, 71(4): 296-301.
|
| 18. |
Naganuma T. Acute stent malapposition: Harmful or harmless?. International Journal of Cardiology, 2020, 299: 106-107.
|
| 19. |
Im E, Lee S Y, Hong S J, et al. Impact of late stent malapposition after drug-eluting stent implantation on long-term clinical outcomes. Atherosclerosis, 2019, 288: 118-123.
|
| 20. |
Lu Hong, Lee J, Jakl M, et al. Application and evaluation of highly automated software for comprehensive stent analysis in intravascular optical coherence tomography. Sci Rep, 2020, 10(1): 2150.
|
| 21. |
Tanigawa J, Barlis P, di Mario C. Intravascular optical coherence tomography: optimisation of image acquisition and quantitative assessment of stent strut apposition. Euro Intervention: Journal of Euro PCR in Collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2007, 3(1): 128-136.
|
| 22. |
鄭剛. 冠狀動脈粥樣硬化斑塊特征與臨床預后相關性研究的進展. 中華老年心腦血管病雜志, 2020, 22(3): 317-320.
|
| 23. |
Torii S, Jinnouchi H, Sakamoto A, et al. Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. Eur Heart J, 2020, 41(6): 786-796.
|
| 24. |
Khalifa A, Kubo T, Ino Y, et al. Optical coherence tomography comparison of percutaneous coronary intervention among plaque rupture, erosion, and calcified nodule in acute myocardial infarction. Circulation Journal, 2020, 84(6): 911-916.
|
| 25. |
崔新陽. 一種可降解鋅合金血管支架支撐性能及疲勞力學的研究. 北京: 北京工業大學, 2019.
|
| 26. |
喬愛科, 柳思聰, 彭坤. 一種適形貼壁血管內支架: 中國, ZL201910559275.1. 2019-06-26.
|
| 27. |
李紅霞, 張藝浩, 王希誠. 基于有限元模擬的支架擴張、血流動力學及支架疲勞分析. 醫用生物力學, 2012, 27(2): 178-185.
|
| 28. |
王明, 馬全超, 張文光, 等. 壓握過程對球囊擴張支架性能的影響. 上海交通大學學報, 2012, 46(4): 646-650.
|
| 29. |
陳華, 趙仙先. 生物可降解鎂合金支架研究現狀. 介入放射學雜志, 2011, 20(1): 62-64.
|
| 30. |
Martin D, Boyle F. Finite element analysis of balloon-expandable coronary stent deployment: influence of angioplasty balloon configuration. Int J Numer Method Biomed Eng, 2013, 29(11): 1161-1175.
|
| 31. |
張站柱, 喬愛科, 付文宇. 不同連接筋結構的支架治療椎動脈狹窄的力學分析. 醫用生物力學, 2013(1): 44-49.
|
| 32. |
李婧, 彭坤, 崔新陽, 等. 位姿對支架虛擬釋放結果影響的數值模擬研究. 生物醫學工程學雜志, 2018, 35(2): 214-218,228.
|
| 33. |
Li J L, Zheng F, Qiu X, et al. Finite element analyses for optimization design of biodegradable magnesium alloy stent. Materials Science & Engineering C Materials for Biological Applications, 2014, 42: 705-714.
|
| 34. |
Wu W, Gastaldi D, Yang K, et al. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels. Materials Science & Engineering B, 2011, 176(20): 1733-1740.
|
| 35. |
王小平, 焦延鵬, 崔福齋. 新型可降解金屬血管支架的有限元力學分析. 機械設計與研究, 2007, 23(5): 59-61,69.
|