| 1. |
伏云發, 郭衍龍, 張夏冰, 等. 腦機接口: 變革性的人機交互. 北京: 國防工業出版社, 2020.
|
| 2. |
Graimann B, Allison B, Pfurtscheller G. Brain-computer interfaces: Revolutionizing human-computer interaction. Berlin: Springer Publishing Company, 2013.
|
| 3. |
張旭, 袁芳, 姚兆林. 腦機接口: 電路與系統. 北京: 機械工業出版社, 2020.
|
| 4. |
Zjajo A. Brain-machine interface: Circuits and systems. Berlin: Springer Publishing Company, 2016.
|
| 5. |
伏云發, 龔安民, 陳超, 等. 面向實用的腦-機接口: 縮小研究與實際應用之間的差距. 北京: 電子工業出版社, 2021.
|
| 6. |
Allison B Z, Dunne S, Leeb R, et al. Towards practical Brain-Computer Interfaces: Bridging the gap from research to real-world applications. Berlin: Springer Publishing Company, 2012.
|
| 7. |
Chavarriaga R, Fried-Oken M, Kleih S, et al. Heading for new shores! Overcoming pitfalls in BCI design. Brain Computer Interfaces, 2017, 4(1-2): 60-73.
|
| 8. |
Zickler C, Riccio A, Leotta F, et al. A brain-computer interface as input channel for a standard assistive technology software. Clin EEG Neurosci, 2011, 42(4): 236-244.
|
| 9. |
Riccio A, Pichiorri F, Schettini F, et al. Interfacing brain with computer to improve communication and rehabilitation after brain damage. Prog Brain Res, 2016, 228: 357-387.
|
| 10. |
Kübler A, Holz E M, Angela R, et al. The user-centered design as novel perspective for evaluating the usability of BCI-controlled applications. PLoS One, 2014, 9(12): e112392.
|
| 11. |
許為, 葛列眾. 人因學發展的新取向. 心理科學進展, 2018, 26(9): 1521-1534.
|
| 12. |
蔣祖華. 人因工程. 北京: 科學出版社, 2011.
|
| 13. |
Giulia L, Alessia P, Luca S, et al. Developing brain-computer interfaces from a user-centered perspective: Assessing the needs of persons with amyotrophic lateral sclerosis, caregivers, and professionals. Appl Ergon, 2015, 50: 139-146.
|
| 14. |
Kübler A, Nijboer F, Kleih S. Hearing the needs of clinical users. Handb Clin Neurol, 2020, 168: 353-368.
|
| 15. |
Kübler A, Zickler C, Holz E, et al. Applying the user-centred design to evaluation of brain-computer interface controlled applications. Biomed Eng, 2013, 58(15): 3234-3234.
|
| 16. |
Abiri R, Borhani S, Kilmarx J, et al. A usability study of low-cost wireless brain-computer interface for cursor control using online linear model. IEEE Trans Hum Mach Syst, 2020, 50(4): 287-297.
|
| 17. |
Kübler A. The history of BCI: From a vision for the future to real support for personhood in people with locked-in syndrome. Neuroethics, 2020, 13(3): 1-18.
|
| 18. |
Martin S, Armstrong E, Thomson E, et al. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury. Assist Technol, 2018, 30(5): 233-241.
|
| 19. |
Branco M P, Pels E G M, Sars R H, et al. Brain-computer interfaces for communication: Preferences of individuals with locked-in syndrome. Neurorehab Neural Re, 2021, 35(3): 267-279.
|
| 20. |
Wolpaw J R, Millán J D R, Ramsey N F. Brain-computer interfaces: Definitions and principles. Handb Clin Neurol, 2020, 168: 15-23.
|
| 21. |
伏云發, 楊秋紅, 徐寶磊, 等. 腦-機接口原理與實踐. 北京: 國防工業出版社, 2017.
|
| 22. |
Wolpaw J R, Wolpaw E W. Brain-computer interfaces: Principles and practice. Oxford: Oxford University Press, 2012.
|
| 23. |
Benjamin B, Michael T, Carmen V, et al. The Berlin brain-computer interface: Non-medical uses of BCI technology. Front Neurosci, 2010, 4: 198.
|
| 24. |
高久偉, 盧乾波, 鄭璐, 等. 柔性生物電傳感技術. 材料導報, 2020, 34(1): 1095-1106.
|
| 25. |
Kimura M, Nakatani S, Nishida S I, et al. 3D printable dry EEG electrodes with coiled-spring prongs. Sensors, 2020, 20(17): 4733.
|
| 26. |
Casson A J. Wearable EEG and beyond. Biomed Eng Lett, 2019, 1: 53-71.
|
| 27. |
劉鐵軍, 張銳, 徐鵬. 基于運動想象的腦機接口關鍵技術研究. 中國生物醫學工程學報, 2014, 33(6): 644-651.
|
| 28. |
Kübler A, Blankertz B, Müller K R, et al. A model of BCI control// Proceedings of the 5th International Brain-Computer Interface Conference 2011. Graz: Verlag der Technischen Universit?t Graz, 2011: 100-103.
|
| 29. |
許敏鵬, 程秀敏, 明東. 不同視覺注意狀態調制穩態視覺誘發電位特征的可分性研究. 生物醫學工程學雜志, 2019, 36(5): 705-710.
|
| 30. |
Allison B, Luth T, Valbuena D, et al. BCI demographics: How many (and what kinds of) people can use an SSVEP BCI?. IEEE Trans Neural Syst Rehabil Eng, 2010, 18(2): 107-116.
|
| 31. |
Guger C, Daban S, Sellers E, et al. How many people are able to control a P300-based brain-computer interface (BCI)?. Neurosci Lett, 2009, 462: 94-98.
|
| 32. |
Brunner P, Joshi S, Briskin S, et al. Does the ‘P300’ speller depend on eye gaze?. J Neural Eng, 2010, 7(5): 056013.
|
| 33. |
Treder M S, Blankertz B. (C)overt attention and visual speller design in an ERP-based brain-computer interface. Behav Brain Funct, 2010, 6(1): 28.
|
| 34. |
Alonso-Valerdi L M, Arreola-Villarruel M A, Argüello-García J. Brain-computer interfaces: Conceptualization, redesign challenges and social impact. Revista Mexicana de Ingenieria Biomedica, 2020, 40(3): 1-18.
|
| 35. |
Grübler G, Hildt E. Brain-computer interfaces in their ethical, social and cultural contexts. Berlin: Springer Publishing Company, 2014.
|
| 36. |
Vidaurre C, Kawanabe M, et al. Toward unsupervised adaptation of LDA for brain-computer interfaces. IEEE Trans Biomed Eng, 2011, 58(3): 587-597.
|
| 37. |
Faller J, Vidaurre C, Solis-Escalante T, et al. Autocalibration and recurrent adaptation: Towards a plug and play online ERD-BCI. IEEE Trans Neural Syst Rehabil EngI, 2012, 20(3): 313-319.
|
| 38. |
Josef F, Reinhold S, Ursula C, et al. A Co-adaptive brain-computer interface for end users with severe motor impairment. PLoS One, 2014, 9(7): e101168.
|
| 39. |
Samek W, Meinecke F C, Müller K R. Transferring subspaces between subjects in brain-computer interfacing. IEEE Trans Biomed Eng, 2013, 60(8): 2289-2298.
|
| 40. |
Perdikis S, Leeb R, Millan J D R. Subject-oriented training for motor imagery brain-computer interfaces// 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Chicago: IEEE, 2014: 1259-1262.
|
| 41. |
Kobler R J, Scherer R. Restricted Boltzmann machines in sensory motor rhythm brain-computer interfacing: A study on inter-subject transfer and co-adaptation// 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest: IEEE, 2016: 469-474.
|
| 42. |
楊晨. 面向應用的穩態視覺誘發電位腦-機接口算法及系統研究. 北京: 清華大學, 2018.
|
| 43. |
Galán F, Nuttin M, Lew E, et al. A brain-actuated wheelchair: Asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol, 2008, 119(9): 2159-2169.
|
| 44. |
Millan J, Renkens F, Mourino J, et al. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng, 2004, 51(6): 1026-1033.
|
| 45. |
Müller K R, Blankertz B. Toward noninvasive brain–computer interfaces. IEEE Signal Process Mag, 2006, 23(5): 128.
|
| 46. |
Tonin L, Leeb R, Tavella M, et al. The role of shared-control in BCI-based telepresence// 2010 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Istanbul: IEEE, 2010: 1462-1466.
|
| 47. |
Williamson J, Murray-Smith R, Blankertz B, et al. Designing for uncertain, asymmetric control: Interaction design for brain–computer interfaces. Int J Hum-Comput St, 2009, 67(10): 827-841.
|
| 48. |
Wills S A, Mackay D J C. Dasher-an efficient writing system for brain-computer interfaces?. IEEE Trans Neural Syst Rehabil EngI, 2006, 14(2): 244-246.
|
| 49. |
Garipelli G, Galán F, Chavarriaga R, et al. The use of brain-computer interfacing in ambient intelligence. Constructing Ambient Intelligence, 2008, 11: 268-285.
|
| 50. |
Kanemura A, Morales Y, Kawanabe M, et al. A waypoint-based framework in brain-controlled smart home environments: Brain interfaces, domotics, and robotics integration// 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo: IEEE, 2013: 865-870.
|
| 51. |
Liu Yaru, Liu Yadong, Tang Jingsheng, et al. A self-paced BCI prototype system based on the incorporation of an intelligent environment-understanding approach for rehabilitation hospital environmental control. Comput Biol Med, 2020, 118: 103618.
|
| 52. |
劉玉仁, 董震曜. 快速原型法在軟件設計中的應用. 光電對抗與無源干擾, 2002(4): 6-9.
|
| 53. |
Zelkowitz M V. A case study in rapid prototyping. Software Pract Exper, 1980, 10(12): 1037-1042.
|
| 54. |
Zickler C, Donna V D, Kaiser V, et al. Brain computer interaction applications for people with disabilities: Defining user needs and user requirements// 10th European Conference for the Advancement of Assistive Technology. Florence: Association for the Advancement of Assistive Technology in Europe, 2009: 185-189.
|
| 55. |
蔣夢蝶. 膝骨關節炎患者移動輔具使用現狀及影響因素分析. 開封: 河南大學, 2020.
|
| 56. |
Colucci M, Tofani M, Trioschi D, et al. Reliability and validity of the Italian version of Quebec User Evaluation of Satisfaction with Assistive Technology 2.0 (QUEST-IT 2.0) with users of mobility assistive device. Disabil Rehabil Assist Technol, 2019, 25: 1-4.
|
| 57. |
傅嘉豪, 焦學軍, 曹勇, 等. 基于 EEG 的多因素認知任務腦力負荷研究. 航天醫學與醫學工程, 2020, 33(1): 35-44.
|
| 58. |
Hart S G, Staveland L E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv Psychol, 1988, 52: 139-183.
|
| 59. |
Leeb R, Sagha H, Chavarriaga R, et al. A hybrid brain-computer interface based on the fusion of electroence phalographic and electromyographic activities. J Neural Eng, 2011, 8(2): 025011.
|
| 60. |
Chai Xiaoke, Zhang Zhimin, Guan Kai, et al. A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomed Signal Process Control, 2020, 56(2): 101687.
|
| 61. |
李紅衛, 陳小剛. 基于高級控制策略的腦-機接口控制機械臂系統. 北京生物醫學工程, 2019, 38(1): 36-41.
|
| 62. |
楊幫華, 劉麗, 陸文宇, 等. 基于虛擬現實技術的腦機交互反饋系統設計. 北京生物醫學工程, 2011, 30(4): 401-404.
|
| 63. |
瞿軍. 基于生物電信號的人機交互技術及其在虛擬現實中的應用研究. 廣州: 華南理工大學, 2019.
|
| 64. |
蒲賢潔, 劉鐵軍, 吳強, 等. 基于腦電信號的神經反饋系統研究. 生物醫學工程學雜志, 2014, 31(4): 894-898.
|
| 65. |
鄭南寧. 受腦認知和神經科學啟發的人工智能. 網信軍民融合, 2017, 3: 17-19.
|
| 66. |
王行愚, 金晶, 張宇, 等. 腦控: 基于腦-機接口的人機融合控制. 自動化學報, 2013, 39(3): 208-221.
|