| 1. |
Das A, Cash S S, Sejnowski T J. Heterogeneity of preictal dynamics in human epileptic seizures. IEEE Access, 2020, 8: 52738-52748.
|
| 2. |
Cook M J, O'Brien T J, Berkovic S F, et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol, 2013, 12(6): 563-571.
|
| 3. |
Yuan Q, Zhou W D, Zhang L R, et al. Epileptic seizure detection based on imbalanced classification and wavelet packet transform. Seizure-Eur J Epilep, 2017, 50: 99-108.
|
| 4. |
葛燕, 劉崇, 孟凡剛, 等. 腦深部電刺激在癲癇治療中的應用進展. 中華醫學雜志, 2013(7): 558-559.
|
| 5. |
李尊鈺, 袁冠前, 黃平, 等. 基于立體定向腦電圖的顳葉致癇網絡獨立有效相干分析. 生物醫學工程學雜志, 2019, 36(4): 541-547.
|
| 6. |
覃小雅, 袁媛, 陳彥, 等. 頭皮腦電圖在迷走神經電刺激治療難治性癲癇研究中的應用. 生物醫學工程學雜志, 2020, 37(4): 699-707.
|
| 7. |
黃莎, 肖波, 馮莉, 等. 187例成人睡眠相關性癲癇患者的臨床特征及視頻腦電圖分析. 癲癇雜志, 2019, 5(1): 16-20.
|
| 8. |
金洋, 張瑋, 徐斌, 等. 發作期頭皮電極腦電圖在局灶性癲癇診斷中的價值. 癲癇雜志, 2019, 5(6): 431-439.
|
| 9. |
Peng P Z, Wei H K, Xie L P, et al. Epileptic seizure prediction in scalp EEG using an improved hive-cote model// 39th Chinese Control Conference (CCC). Shenyang: TCCT, 2020: 6450-6457.
|
| 10. |
Xu Y, Yang J, Zhao S, et al. An end-to-end deep learning approach for epileptic seizure prediction// 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). Genova: IEEE, 2020: 266-270.
|
| 11. |
Yuan S S, Zhou W D, Chen L Y. Epileptic seizure prediction using diffusion distance and bayesian linear discriminate analysis on intracranial EEG. Int J Neural Syst, 2018, 28(1): 1750043.
|
| 12. |
Mahmoodian N, Haddadnia J, Illanes A, et al. Seizure prediction with cross-higher-order spectral analysis of EEG signals. Signal Image Video P, 2020, 14(4): 821-828.
|
| 13. |
Wang G, Wang D, Du C W, et al. Seizure prediction using directed transfer function and convolution neural network on intracranial EEG. IEEE Trans Neural Syst Rehabil Eng, 2020, 28(12): 2711-2720.
|
| 14. |
王蕾. 基于多路腦電分析的癲癇發作預測算法初步研究. 西安: 第四軍醫大學, 2008.
|
| 15. |
Sharma A, Rai J K, Tewar R P, et al. Multivariate EEG signal analysis for early prediction of epileptic seizure// 2nd International Conference on Recent Advances in Engineering. Chandigarh: IEEE, 2015: 1-5.
|
| 16. |
Sharma A. Epileptic seizure prediction using power analysis in beta band of EEG signals// 2015 International Conference on Soft Computing Techniques and Implementations (ICSCTI). Faridabad: IEEE, 2015: 117-121.
|
| 17. |
Li S F, Zhou W D, Yuan Q, et al. Seizure prediction using spike rate of intracranial EEG. IEEE Trans Neural Syst Rehabil Eng, 2013, 21(6): 880-886.
|
| 18. |
Zandi A S, Tafreshi R, Javidan M, et al. Predicting epileptic seizures in scalp EEG based on a variational bayesian gaussian mixture model of zero-crossing intervals. IEEE Trans Biomed Eng, 2013, 60(5): 1401-1413.
|
| 19. |
Li F L, Liang Y, Zhang L Y, et al. Transition of brain networks from an interictal to a preictal state preceding a seizure revealed by scalp EEG network analysis. Cogn Neurodyn, 2019, 13(2): 175-181.
|
| 20. |
Muhlberg K, Muller J, Tetzlaff R. Seizure prediction by multivariate autoregressive model order optimization. Current Directions in Biomedical Engineering, 2018, 4(1): 395-398.
|
| 21. |
Osman A H, Alzahrani A A. New approach for automated epileptic disease diagnosis using an integrated self-organization map and radial basis function neural network algorithm. IEEE Access, 2019, 7: 4741-4747.
|
| 22. |
Daoud H, Williams P, Bayoumi M, et al. IoT based efficient epileptic seizure prediction system using deep learning// 6th IEEE Virtual World Forum on Internet of Things (IEEE WF-IoT). New Orleans: IEEE, 2020: 1-6.
|
| 23. |
Zhang R J, Jiang X Y, Dai C Y, et al. Tensor-based uncorrelated multilinear discriminant analysis for epileptic seizure prediction// 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal: IEEE, 2020: 541-544.
|
| 24. |
Naftulin J S, Ahmed O J, Piantoni G, et al. Ictal and preictal power changes outside of the seizure focus correlate with seizure generalization. Epilepsia, 2018, 59(7): 1398-1409.
|
| 25. |
Kitano L A S, Sousa M A A, Santos S D, et al. Epileptic seizure prediction from EEG signals using unsupervised learning and a polling-based decision process// 27th International Conference on Artificial Neural Networks (ICANN). Rhodes: ENNS, 2018: 117-126.
|
| 26. |
Raghu S, Sriraam N, Rao S V, et al. Automated detection of epileptic seizures using successive decomposition index and support vector machine classifier in long-term EEG. Neural Comput Appl, 2020, 32(13): 8965-8984.
|
| 27. |
Mahmoodian N, Boese A, Friebe M, et al. Epileptic seizure detection using cross-bispectrum of electroencephalogram signal. Seizure-Eur J Epilep, 2019, 66: 4-11.
|
| 28. |
Liu Xuefei, Li Jinbao, Shu Minglei. Epileptic seizure prediction based on region correlation of EEG signal// 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS) Proceedings. Rochester: IEEE, 2020: 120-125.
|
| 29. |
Zhang Q Z, Hu Y J, Potter T, et al. Establishing functional brain networks using a nonlinear partial directed coherence method to predict epileptic seizures. J Neurosci Methods, 2020, 329: 108447.
|
| 30. |
Yuan Q, Wei D M. A seizure prediction method based on efficient features and BLDA// IEEE International Conference on Digital Signal Processing (DSP). Singapore: IEEE, 2015: 177-181.
|
| 31. |
Usman S M, Latif S, Beg A. Principle components analysis for seizures prediction using wavelet transform. Int J Adv Appl Sci, 2019, 6(3): 50-55.
|
| 32. |
Chen S N, Zhang X, Chen L L, et al. Automatic diagnosis of epileptic seizure in electroencephalography signals using nonlinear dynamics features. IEEE Access, 2019, 7: 61046-61056.
|
| 33. |
Alickovic E, Kevric J, Subasi A. Performance evaluation of empirical mode decomposition, discrete wavelet transform, and wavelet packed decomposition for automated epileptic seizure detection and prediction. Biomed Signal Proces, 2018, 39: 94-102.
|
| 34. |
Truong N D, Nguyen A D, Kuhlmann L, et al. A generalised seizure prediction with convolutional neural networks for intracranial and scalp electroencephalogram data analysis. arXiv, 2017: 1707.01976.
|
| 35. |
單紹杰, 李漢軍, 王璐璐, 等. 基于LSTM模型的單導聯腦電癲癇發作預測. 計算機應用研究, 2018, 35(11): 3251-3254.
|
| 36. |
王雅靜, 王群, 李博聞, 等. 基于腦電信號預發作數據段選取的癲癇發作預測. 浙江大學學報(工學版), 2020, 54(11): 2258-2265.
|
| 37. |
Yoo Y. On predicting epileptic seizures from intracranial electroencephalography. Biomed Eng Lett, 2017, 7(1): 1-5.
|
| 38. |
Khalid M I, Aldosari S A, Alshebeili S A, et al. Online adaptive seizure prediction algorithm for scalp EEG// International Conference on Information and Communication Technology Research (ICTRC 2015). Abu Dhabi: IEEE, 2015: 44-47.
|
| 39. |
Aarabi A, He B. Seizure prediction in patients with focal hippocampal epilepsy. Clin Neurophysiol, 2017, 128(7): 1299-1307.
|
| 40. |
Cho D, Min B, Kim J, et al. EEG-based prediction of epileptic seizures using phase synchronization elicited from noise-assisted multivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng, 2017, 25(8): 1309-1318.
|
| 41. |
韓凌, 王宏. 基于空頻域特征分析方法的癲癇發作預測. 儀器儀表學報, 2014, 35(11): 2501-2507.
|
| 42. |
周夢妮, 崔會芳, 曹銳, 等. 基于排列熵和支持向量機的癲癇發作預測研究. 計算機應用研究, 2019, 36(6): 1696-1699.
|
| 43. |
Ozcan A R, Erturk S. Seizure prediction in scalp EEG using 3D convolutional neural networks with an image-based approach. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(11): 2284-2293.
|
| 44. |
Namazi H, Kulish V V, Hussaini J, et al. A signal processing based analysis and prediction of seizure onset in patients with epilepsy. Oncotarget, 2016, 7(1): 342-350.
|
| 45. |
Zhang Y L, Yang R D, Zhou W D. Roughness-length-based characteristic analysis of intracranial EEG and epileptic seizure prediction. Int J Neural Syst, 2020, 30(12): 2050072.
|
| 46. |
Fei K L, Wang W, Yang Q L, et al. Chaos feature study in fractional Fourier domain for preictal prediction of epileptic seizure. Neurocomputing, 2017, 249: 290-298.
|
| 47. |
崔嵩. 基于神經網絡的癲癇腦電預測和源定位問題研究. 北京: 北京工業大學, 2019.
|
| 48. |
Liu C L, Xiao B, Hsaio W H, et al. Epileptic seizure prediction with multi-view convolutional neural networks. IEEE Access, 2019, 7: 170352-170361.
|
| 49. |
Masum M, Shahriar H, Haddad H M, et al. Epileptic seizure detection for imbalanced datasets using an integrated machine learning approach// 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Montreal: IEEE, 2020: 5416-5419.
|
| 50. |
Zhang Y, Guo Y, Yang P, et al. Epilepsy seizure prediction on EEG using common spatial pattern and convolutional neural network. IEEE J Biomed Health, 2020, 24(2): 465-474.
|
| 51. |
Chisci L, Mavino A, Perferi G, et al. Real-time epileptic seizure prediction using ar models and support vector machines. IEEE Trans Biomed Eng, 2010, 57(5): 1124-1132.
|
| 52. |
Karthick P A, Tanaka H, Khoo H M, et al. Prediction of secondary generalization from a focal onset seizure in intracerebral EEG. Clin Neurophysiol, 2018, 129(5): 1030-1040.
|
| 53. |
Assi E B, Nguyen D K, Rihana S, et al. A functional-genetic scheme for seizure forecasting in canine epilepsy. IEEE Trans Biomed Eng, 2018, 65(6): 1339-1348.
|
| 54. |
Varatharajah Y, Iyer R K, Berry B M, et al. Seizure forecasting and the preictal state in canine epilepsy. Int J Neural Syst, 2017, 27(1): 1650046.
|
| 55. |
Bandarabadi M, Teixeira C A, Rasekhi J, et al. Epileptic seizure prediction using relative spectral power features. Clin Neurophysiol, 2015, 126(2): 237-248.
|
| 56. |
Wang N, Lyu M R. Extracting and selecting distinctive EEG features for efficient epileptic seizure prediction. IEEE J Biomed Health, 2015, 19(5): 1648-1659.
|
| 57. |
韓敏, 王明慧, 洪曉軍, 等. 基于概率判決極端學習機的癲癇發作預報研究. 中國生物醫學工程學報, 2012, 31(2): 175-183.
|
| 58. |
Nesaei S, Sharafat A R. Real-time mining of epileptic seizure precursors via nonlinear mapping and dissimilarity features. IET Signal Processing, 2015, 9(3): 193-200.
|
| 59. |
Zhang Z S, Parhi K K. Low-complexity seizure prediction from iEEG/sEEG using spectral power and ratios of spectral power. IEEE T Biomed Circ S, 2016, 10(3): 693-706.
|
| 60. |
Shiao H T, Cherkassky V, Lee J, et al. SVM-based system for prediction of epileptic seizures from iEEG signal. IEEE Trans Biomed Eng, 2017, 64(5): 1011-1022.
|
| 61. |
Hussain L. Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach. Cogn Neurodyn, 2018, 12(3): 271-294.
|
| 62. |
Elgohary S, Eldawlatly S, Khalil M I, et al. Epileptic seizure prediction using zero-crossings analysis of EEG wavelet detail coefficients// 13th IEEE Annual Conference on Computational Intelligence in Bioinformatics and Computational Biology (IEEE CIBCB). Chiang Mai: IEEE, 2016: 6.
|
| 63. |
Mohan N, Shanir P P M, Sulthan N, et al. Automatic epileptic seizure prediction in scalp EEG// 2nd International Conference on Intelligent Circuits and Systems (ICICS). Phagwara: IEEE, 2018: 275-280.
|
| 64. |
Hasan M K, Ahamed M A, Ahmad M, et al. Prediction of epileptic seizure by analysing time series EEG signal using k-NN classifier. Appl Bionics Biomech, 2017, 2017(4): 1-12.
|
| 65. |
Sun M R, Wang F X, Min T F, et al. Prediction for high risk clinical symptoms of epilepsy based on deep learning algorithm. IEEE Access, 2018, 6: 77596-77605.
|
| 66. |
Parvez M Z, Paul M. Seizure prediction using undulated global and local features. IEEE Trans Biomed Eng, 2017, 64(1): 208-217.
|
| 67. |
Parvez M Z, Paul M. Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation. IEEE Trans Neural Syst Rehabil Eng, 2016, 24(1): 158-168.
|
| 68. |
Parvez M Z, Paul M. Seizure prediction by analyzing EEG signal based on phase correlation// 37th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC). Milan: IEEE, 2015: 2888-2891.
|
| 69. |
孫志軍, 薛磊, 許陽明, 等. 深度學習研究綜述. 計算機應用研究, 2012, 29(8): 2806-2810.
|
| 70. |
張榮, 李偉平, 莫同. 深度學習研究綜述. 信息與控制, 2018, 47(4): 385-397, 410.
|
| 71. |
Yu Z Y, Nie W W, Zhou W D, et al. Epileptic seizure prediction based on local mean decomposition and deep convolutional neural network. J Supercomput, 2020, 76(5): 3462-3476.
|
| 72. |
Liu G Y, Zhou W D, Geng M X. Automatic seizure detection based on S-transform and deep convolutional neural network. Int J Neural Syst, 2020, 30(4): 1950024.
|
| 73. |
Abdelhameed A M, Bayoumi M. Semi-supervised deep learning system for epileptic seizures onset prediction// 17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA). Orlando: IEEE, 2018: 1186-1191.
|
| 74. |
Tang L H, Xie N, Zhao M L, et al. Seizure prediction using multi-view features and improved convolutional gated recurrent network. IEEE Access, 2020, 8: 172352-172361.
|
| 75. |
Zhang S S, Chen D, Ranjan R, et al. A lightweight solution to epileptic seizure prediction based on EEG synchronization measurement. J Supercomput, 2021, 77(4): 3914-3932.
|
| 76. |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets// 28th Conference on Neural Information Processing Systems (NIPS). Montreal: NIPS, 2014: 2672-2680.
|
| 77. |
Truong N D, Kuhlmann L, Bonyadi M R, et al. Epileptic seizure forecasting with generative adversarial networks. IEEE Access, 2019, 7: 143999-144009.
|
| 78. |
Affes A, Mdhaffar A, Triki C, et al. A convolutional gated recurrent neural network for epileptic seizure prediction// 17th International Conference on Smart Living and Public Health (ICOST). New York City: Med NYA, 2019: 85-96.
|
| 79. |
Shahbazi M, Aghajan H. A generalizable model for seizure prediction based on deep learning using CNN-LSTM architecture// IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim: IEEE, 2018: 469-473.
|
| 80. |
Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN Encoder-Decoder for statistical machine translation// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha: Association for Computational Linguistics, 2014: 1724-1734.
|
| 81. |
Daoud H, Bayoumi M. Deep learning based reliable early epileptic seizure predictor// IEEE Biomedical Circuits and Systems Conference (BioCAS)-Advanced Systems for Enhancing Human Health. Cleveland: IEEE, 2018: 319-322.
|
| 82. |
Daoud H, Bayoumi M A. Efficient epileptic seizure prediction based on deep learning. IEEE T Biomed Circ S, 2019, 13(5): 804-813.
|
| 83. |
Fathima T, Paul J K, Bedeeuzzaman M. Epileptic seizure prediction in scalp EEG using one dimensional local binary pattern based features// BIOSTEC 2016 9th International Joint Conference on Biomedical Engineering Systems and Technologies Proceedings: Biosignals. Rome: INSTICC, 2016: 25-33.
|
| 84. |
Aarabi A, He B. Seizure prediction in hippocampal and neocortical epilepsy using a model-based approach. Clin Neurophysiol, 2014, 125(5): 930-940.
|
| 85. |
Truong N D, Nguyen A D, Kuhlmann L, et al. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw, 2018, 105: 104-111.
|
| 86. |
Alotaiby T N, Alshebeili S A, Alotaibi F M, et al. Epileptic seizure prediction using CSP and LDA for scalp EEG signals. Comput Intel Neurosc, 2017, 2017: 1240323.
|
| 87. |
Usman S M, Khalid S, Aslam M H. Epileptic seizures prediction using deep learning techniques. IEEE Access, 2020, 8: 39998-40007.
|
| 88. |
Ma D B, Zheng J T, Peng L Z. Performance evaluation of epileptic seizure prediction using time, frequency, and time-frequency domain measures. Processes, 2021, 9(4): 682.
|
| 89. |
Abdelhameed A M, Bayoumi M, IEEE. An efficient deep learning system for epileptic seizure prediction// 2021 IEEE International Symposium on Circuits and Systems (IEEE ISCAS). Daegu: IEEE, 2021: 1-5.
|
| 90. |
Li C S, Zhou W D, Liu G Y, et al. Seizure onset detection using empirical mode decomposition and common spatial pattern. IEEE Trans Neural Syst Rehabil Eng, 2021, 29: 458-467.
|