| 1. |
Wolpaw J R, Birbaumer N, Mcfarland D J, et al. Brain-computer interfaces for communication and control. Clin Neurophysiol, 2002, 113(6): 767-791.
|
| 2. |
Herweg A, Gutzeit J, Kleih S, et al. Wheelchair control by elderly participants in a virtual environment with a brain-computer interface (BCI) and tactile stimulation. Biol Psychol, 2016, 121: 117-124.
|
| 3. |
Saravanakumar D, Reddy M R. A high performance hybrid SSVEP based BCI speller system. Adv Eng Inform, 2019, 42: 100994.
|
| 4. |
Schloegl A, Lee F, Bischof H, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005. J Neural Eng, 2005, 2(4): 14-22.
|
| 5. |
Hill N J, Lal T N, Schroeder M, et al. Classifying event-related desynchronization in EEG, ECoG and MEG signals// The 28th Annual Symposium of the Gernan Association for Pattern Recognition, Berlin: Springer Berlin Heidelberg, 2006, 4174: 404-413.
|
| 6. |
Singh A, Hussain A A, Lal S, et al. A comprehensive review on critical issues and possible solutions of motor imagery based electroencephalography brain-computer interface. Sensors, 2021, 21(6): 2173.
|
| 7. |
Chu Yaqi, Zhao Xingang, Zou Yijun, et al. Decoding multiclass motor imagery EEG from the same upper limb by combining riemannian geometry features and partial least squares regression. J Neural Eng, 2020, 17(4): 046029.
|
| 8. |
Das A K, Suresh S. An effect-size based channel selection algorithm for mental task classification in brain computer interface// The IEEE international conference on systems, man, and cybernetics, Hongkong: IEEE, 2015: 3140-3145.
|
| 9. |
Qi F F, Wu W, Yu Z L, et al. Spatio temporal-filtering-based channel selection for single-trial EEG classification. IEEE T Cybernetics, 2021, 51(2): 558-567.
|
| 10. |
Park Y, Chung W. Selective feature generation method based on time domain parameters and correlation coefficients for filter-bank- CSP BCI systems. Sensors, 2019, 19(17): 3769.
|
| 11. |
付榮榮, 田永勝, 鮑甜怡. 基于稀疏共空間模式和Fisher判別的單次運動想象腦電信號識別方法. 生物醫學工程學雜志, 2019, 36(6): 911-915, 923.
|
| 12. |
駱金晨, 姜月, 胡秀枋, 等. 基于多特征融合的多分類運動想象腦電信號識別研究. 生物信息學, 2020, 18(3): 176-185.
|
| 13. |
郜東瑞, 周暉, 馮李逍, 等. 基于特征融合和粒子群優化算法的運動想象腦電信號識別方法. 電子科技大學學報, 2021, 50(3): 467-475.
|
| 14. |
汲繼躍, 佘青山, 張啟中, 等. 最優區域共空間模式的運動想象腦電信號分類方法. 傳感技術學報, 2020, 33(1): 34-39.
|
| 15. |
Goldberger A L, Amaral L A N, Glass L, et al. PhysioBank, PhysioToolkit, and PhysioNet-components of a new research resource for complex physiologic signals. Circulation, 2000, 101(23): 215-220.
|
| 16. |
Schalk G, Mcfarland D J, Hinterberger T, et al. BCI2000: a general-purpose, brain-computer interface (BCI) system. IEEE T Bio-Med Eng, 2004, 51(6): 1034-1043.
|
| 17. |
Varsehi H, Firoozabadi S M P. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality. Neural Networks, 2021, 133: 193-206.
|
| 18. |
Lun Xiangmin, Yu Zhenglin, Chen Tao, et al. A simplified CNN classification method for MI-EEG via the electrode pairs signals. Front Hum Neurosci, 2020, 14: 338.
|
| 19. |
Hou Y M, Zhou L, Jia S Y, et al. A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN. J Neural Eng, 2020, 17(1): 016048.
|
| 20. |
徐欣, 王娜. 四類運動想象腦電信號的特征提取與分類. 南京郵電大學學報: 自然科學版, 2017, 37(6): 18-22.
|
| 21. |
馬滿振, 郭理彬, 蘇奎峰. 基于多類運動想象任務的EEG信號分類研究. 計算機測量與控制, 2017, 25(10): 232-239.
|
| 22. |
Robnik-Sikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn, 2003, 53(1-2): 23-69.
|
| 23. |
張小內, 翟文鵬, 侯惠讓, 等. 基于ReliefF-Pearson的嗅覺腦電通道選擇. 電子信息學報, 2021, 43(7): 2032-2037.
|
| 24. |
Mishuhina V, Jiang Xudong. Feature weighting and regularization of common spatial patterns in EEG-based motor imagery BCI. IEEE Signal Proc Let, 2018, 25(6): 783-787.
|
| 25. |
褚亞奇, 朱波, 趙新剛, 等. 基于時空特征學習卷積神經網絡的運動想象腦電解碼方法. 生物醫學工程學雜志, 2021, 38(1): 1-9.
|
| 26. |
Fu Rongrong, Han Mengmeng, Tian Yongsheng, et al. Improvement motor imagery EEG classification based on sparse common spatial pattern and regularized discriminant analysis. J Neurosci Meth, 2020, 343: 108833.
|
| 27. |
Luo Jing, Gao Xing, Zhu Xiaobei, et al. Motor imagery EEG classification based on ensemble support vector learning. Comput Meth Prog Bio, 2020, 193: 105464.
|
| 28. |
Tolic M, Jovic F. Classification of wavelet transformed EEG signals with neural network for imagined mental and motor tasks. Kinesiology, 2013, 45(1) :130-138.
|
| 29. |
Kim Y, Ryu J, Kim K K, et al. Motor imagery classification using mu and beta rhythms of EEG with strong uncorrelating transform based complex common spatial patterns. Comput Intel Neurosc. 2016, 2016: 1489692.
|
| 30. |
Dose H, Moller J S, Lversen H K, et al. An end-to-end deep learning approach to MI-EEG signal classification for BCIs. Expert Syst Appl, 2018, 114: 532-542.
|