| 1. |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
| 2. |
陳金東. 中國各類癌癥的發病率和死亡率現狀及發展趨勢. 遵義醫學院學報, 2018, 41(6): 653-662.
|
| 3. |
魯欣, 蔣棟銘, 胡明, 等. 2004-2018年全國前列腺癌死亡率的流行特征及時間趨勢. 上海預防醫學, 2021, 33(10): 899-904.
|
| 4. |
劉宗超, 李哲軒, 張陽, 等. 2020全球癌癥統計報告解讀. 腫瘤綜合治療電子雜志, 2021, 7(2): 1-13.
|
| 5. |
Zhu Y, Mo M, Wei Y, et al. Epidemiology and genomics of prostate cancer in Asian men. Nat Rev Urol, 2021, 18(5): 282-301.
|
| 6. |
曹德宏, 柳良仁, 魏強, 等. 前列腺癌的治療研究進展. 華西醫學, 2017, 32(2): 277-281.
|
| 7. |
中國抗癌協會泌尿男生殖系統腫瘤專業委員會前列腺癌學組. 前列腺癌篩查中國專家共識(2021年版). 中國癌癥雜志, 2021, 31(5): 435-440.
|
| 8. |
郭吉鋒, 紀志英, 解丙坤, 等. T2WI 聯合 DWI 及 DCE 對外周帶慢性前列腺炎與前列腺癌的診斷效能分析. 磁共振成像, 2020, 11(12): 1182-1185.
|
| 9. |
劉可文, 劉紫龍, 汪香玉, 等. 基于級聯卷積神經網絡的前列腺磁共振圖像分類. 波譜學雜志, 2020, 37(2): 152-161.
|
| 10. |
Vincent G, Guillard G, Bowes M. Fully automatic segmentation of the prostate using active appearance models. Prostate MR Image Segmentation, 2012, 2012: 2.
|
| 11. |
Malmberg F, Strand R, Kullberg J, et al. Smart paint a new interactive segmentation method applied to MR prostate segmentation. Prostate MR Image Segmentation, 2012, 2012: 1.
|
| 12. |
張永德, 彭景春, 劉罡, 等. 基于水平集的前列腺磁共振圖像分割方法研究. 儀器儀表學報, 2017, 38(2): 416-424.
|
| 13. |
Liu Q, Dou Q, Yu L, et al. MS-Net: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE transactions on medical imaging, 2020, 39(9): 2713-2724.
|
| 14. |
Cuocolo R, Comelli A, Stefano A, et al. Deep learning whole-gland and zonal prostate segmentation on a public MRI dataset. Journal of Magnetic Resonance Imaging, 2021, 54(2): 452-459.
|
| 15. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation//International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich: Springer Lncs, 2015: 234-241.
|
| 16. |
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston: IEEE, 2015: 3431-3440.
|
| 17. |
Lei Y, Dong X, Tian Z, et al. CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network. Med Phys, 2020, 47(2): 530-540.
|
| 18. |
Milletari F, Navab N, Ahmadi S A. V-net: fully convolutional neural networks for volumetric medical image segmentation//2016 Fourth International Conference on 3D Vision (3DV). Stanford: IEEE, 2016: 565-571.
|
| 19. |
Kohl S, Bonekamp D, Schlemmer H P, et al. Adversarial networks for the detection of aggressive prostate cancer. arXiv preprint, 2017, arXiv: 1702.08014.
|
| 20. |
Litjens G, Toth R, van de Ven W, et al. Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Med Image Anal, 2014, 18(2): 359-373.
|
| 21. |
褚晶輝, 李曉川, 張佳祺, 等. 一種基于級聯卷積網絡的三維腦腫瘤精細分割. 激光與光電子學進展, 2019, 56(10): 75-84.
|
| 22. |
張佳. 肺結節分割的V-Net模型改進研究. 上海: 東華大學,2021.
|
| 23. |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
| 24. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: learning where to look for the pancreas. arXiv preprint, 2018, arXiv: 1804.03999.
|
| 25. |
Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift//International Conference On Machine Learning. Lille: PMLR, 2015: 448-456.
|
| 26. |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 2818-2826.
|
| 27. |
Drozdzal M, Vorontsov E, Chartrand G, et al. The importance of skip connections in biomedical image segmentation//International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Munich: Springer Cham, 2016: 179-187.
|
| 28. |
Çiçek Ö, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation//Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens: Springer International Publishing, 2016: 424-432.
|
| 29. |
Ou Y, Doshi J, Erus G, et al. Multi-atlas segmentation of the prostate: a zooming process with robust registration and atlas selection. Medical Image Computing and Computer Assisted Intervention (MICCAI) Grand Challenge: Prostate MR Image Segmentation, 2012, 7: 1-7.
|