| 1. |
Zacks J M. Neuroimaging studies of mental rotation: a meta-analysis and review. Journal of Cognitive Neuroscience, 2008, 20(1): 1-19.
|
| 2. |
Shepard R N, Metzler J. Mental rotation of three-dimensional objects. Science, 1971, 171(3972): 701-703.
|
| 3. |
黃薇, 馬穎玉, 吳劍鋒, 等. 復雜環境下不同心理旋轉能力人群步行導航行為研究. 人類工效學, 2021, 27(6): 1-10.
|
| 4. |
唐偉財, 陳善廣, 肖毅, 等. 立體信息不同缺失水平下基本認知能力在遙操作任務中的作用研究. 載人航天, 2017, 23(2): 266-273.
|
| 5. |
朱淑佩, 唐偉財, 王篤明, 等. 基本認知與操作能力對機械臂精細對接任務績效及人誤的影響. 載人航天, 2022, 28(1): 47-54.
|
| 6. |
van Tetering M, van der Donk M, de Groot R H M, et al. Sex differences in the performance of 7-12 year olds on a mental rotation task and the relation with arithmetic performance. Frontiers in Psychology, 2019, 10: 107.
|
| 7. |
Nitsche M A, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of Physiology, 2000, 527(3): 633-639.
|
| 8. |
Reed T, Cohen K R. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. Journal of Inherited Metabolic Disease, 2018, 41(6): 1123-1130.
|
| 9. |
Stagg C J, Nitsche M A. Physiological basis of transcranial direct current stimulation. Neuroscientist, 2011, 17(1): 37-53.
|
| 10. |
Nikolin S, Loo C K, Bai S, et al. Focalised stimulation using high definition transcranial direct current stimulation (HD-tDCS) to investigate declarative verbal learning and memory functioning. NeuroImage, 2015, 117: 11-19.
|
| 11. |
Fregni F, Boggio P S, Nitsche M, et al. Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Experimental Brain Research, 2005, 166(1): 23-30.
|
| 12. |
Martin A K, Kessler K, Cooke S, et al. The right temporoparietal junction is causally associated with embodied perspective-taking. Journal of Neuroscience, 2020, 40(15): 3089-3095.
|
| 13. |
?ivanovi? M, Paunovi? D, Konstantinovi? U, et al. The effects of offline and online prefrontal vs parietal transcranial direct current stimulation (tDCS) on verbal and spatial working memory. Neurobiology of Learning and Memory, 2021, 179: 107398.
|
| 14. |
Hampstead B M, Brown G S, Hartley J F. Transcranial direct current stimulation modulates activation and effective connectivity during spatial navigation. Brain Stimulation, 2014, 7(2): 314-324.
|
| 15. |
Gogos A, Gavrilescu M, Davison S, et al. Greater superior than inferior parietal lobule activation with increasing rotation angle during mental rotation: an fMRI study. Neuropsychologia, 2010, 48(2): 529-535.
|
| 16. |
Burles F, Lu J, Slone E, et al. Revisiting mental rotation with stereoscopic disparity: a new spin for a classic paradigm. Brain and Cognition, 2019, 136: 103600.
|
| 17. |
Zhu R, Wang Z, You X. Anodal transcranial direct current stimulation over the posterior parietal cortex enhances three-dimensional mental rotation ability. Neurosci Res, 2021, 170: 208-216.
|
| 18. |
Foroughi C K, Blumberg E J, Parasuraman R. Activation and inhibition of posterior parietal cortex have bi-directional effects on spatial errors following interruptions. Frontiers in Systems Neuroscience, 2015, 8: 245.
|
| 19. |
Oldrati V, Colombo B, Antonietti A. Combination of a short cognitive training and tDCS to enhance visuospatial skills: a comparison between online and offline neuromodulation. Brain Research, 2018, 1678: 32-39.
|
| 20. |
Sur S, Sinha V K. Event-related potential: an overview. Industrial Psychiatry Journal, 2009, 18(1): 70-73.
|
| 21. |
Kasten F H, Herrmann C S. Transcranial alternating current stimulation (tACS) enhances mental rotation performance during and after stimulation. Frontiers in Human Neuroscience, 2017, 11: 2.
|
| 22. |
Omoto S, Kuroiwn Y, Otsuka S, et al. P1 and P2 components of human visual evoked potentials are modulated by depth perception of 3-dimensional images. Clinical Neurophysiology, 2010, 121(3): 386-391.
|
| 23. |
Datta A, Bansal V, Diaz J, et al. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2009, 2(4): 201-207.
|
| 24. |
Hautus M J, Macmillan N A, Creelman C D. Detection theory: a user's guide. 3rd ed. New York: Routledge. 2021.
|
| 25. |
Hawes Z, Moss J, Caswell B, et al. Effects of mental rotation training on children’s spatial and mathematics performance: a randomized controlled study. Trends in Neuroscience and Education, 2015, 4(3): 60-68.
|
| 26. |
Jaeggi S M, Buschkuehl M, Jonides J, et al. Short- and long-term benefits of cognitive training. Proceedings of the National Academy of Sciences USA, 2011, 108(25): 10081-10086.
|
| 27. |
Heil M, R?sler F, Link M, et al. What is improved if a mental rotation task is repeated–the efficiency of memory access, or the speed of a transformation routine?. Psychological Research, 1998, 61(2): 99-106.
|
| 28. |
Sievertsen H H, Gino F, Piovesan M. Cognitive fatigue influences students’ performance on standardized tests. Proceedings of the National Academy of Sciences USA, 2016, 113(10): 2621-2624.
|
| 29. |
Neubauer A C, Fink A. Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 2009, 33(7): 1004-1023.
|
| 30. |
Beste C, Heil M, Konrad C. Individual differences in ERPs during mental rotation of characters: lateralization, and performance level. Brain and Cognition, 2010, 72(2): 238-243.
|
| 31. |
Griksiene R, Arnatkeviciute A, Monciunskaite R, et al. Mental rotation of sequentially presented 3D figures: sex and sex hormones related differences in behavioural and ERP measures. Scientific Reports, 2019, 9(1): 18843.
|
| 32. |
Wichary S, Magnuski M, Oleksy T, et al. Neural signatures of rational and heuristic choice strategies: a single trial ERP analysis. Frontiers in human neuroscience, 2017, 11: 401.
|