| 1. |
Lan Y, Sun Y, Yang T, et al. Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer. Mol Pharm, 2019, 16(8): 3430-3440.
|
| 2. |
馬駿威, 安娜. 凍干注射劑中輔料選擇的考慮. 中國藥學雜志, 2020, 55(7): 568-572.
|
| 3. |
Falin T, Tongtao Y, Ye L, et al. Computer simulation studies on the interactions between nanoparticles and cell membrane. Sci China Chem, 2014, 57(12): 1662-1671.
|
| 4. |
Badu S, Prabhakar S, Melnik R. Coarse-grained models of RNA nanotubes for large time scale studies in biomedical applications. Biomedicines, 2020, 8(7): 195.
|
| 5. |
Marchetto A, Chaib Z S, Rossi C A, et al. CGMD platform: integrated web servers for the preparation, running, and analysis of coarse-grained molecular dynamics simulations. Molecules, 2020, 25(24): 5934.
|
| 6. |
Allen C, Bureau H R, Mcgee T D, et al. Benchmarking adaptive steered molecular dynamics (ASMD) on charmm force fields. Chemphyschem, 2022, 23(17): e202200175.
|
| 7. |
Vani I, Dans P D, Noy A, et al. A refined force field for DNA simulations. Nat Methods, 2016, 13(1): 55-58.
|
| 8. |
Savin A, Mazo M A. The compass force field: validation for carbon nanoribbons. Physica E, 2020, 118: 113937.
|
| 9. |
龔銘城, 周良良, 馬欣悅, 等. 分子模擬在納米載藥材料中的應用研究進展. 高分子通報, 2022, 280(8): 21-28.
|
| 10. |
MacCallum J L, Hu S, Lenz S, et al. An implementation of the Martini coarse-grained force field in OpenMM. Biophys J, 2023, 122(14): 2864-2870.
|
| 11. |
Takada S, Kanda R, Tan C, et al. Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc Chem Res, 2015, 48(12): 3026-3035.
|
| 12. |
Moore T C, Iacovella C R, Hartkamp R, et al. A coarse-grained model of stratum corneum lipids: free fatty acids and ceramidens. J Phys Chem B, 2016, 120(37): 9944-9958.
|
| 13. |
Bae S, Oh I, Yoo J, et al. Effect of DNA flexibility on complex formation of a cationic nanoparticle with double-stranded DNA. ACS Omega, 2021, 6(29): 18728-18736.
|
| 14. |
Majumder A, Straub J E. Addressing the excessive aggregation of membrane proteins in the Martini model. J Chemical Theory Comput, 2021, 17(4): 2513-2521.
|
| 15. |
Alessandri R, Grunewald F, Marrink S J. The Martini model in materials science. Adv Mater, 2021, 33(24): 2008635.
|
| 16. |
De Jong D H, Singh G, Bennett W F D, et al. Improved parameters for the Martini coarse-grained protein force field. J Chem Theory Comput, 2013, 9(1): 687-697.
|
| 17. |
Su C H, Chen H L, Ju S P, et al. Exploring the most stable aptamer/target molecule complex by the stochastic tunnelling-basin hopping-discrete molecular dynamics method. Sci Rep, 2021, 11(1): 11406.
|
| 18. |
Liu P, Li J, Zhang Y W. Breakup of spherical vesicles caused by spontaneous curvature change. Acta Mech Sin, 2012, 28(6): 1545-1550.
|
| 19. |
Zhang P, Zhang N, Deng Y, et al. A multiple time stepping algorithm for efficient multiscale modeling of platelets flowing in blood plasma. J Comput Phys, 2015, 284: 668-686.
|
| 20. |
Negami T, Shimizu K, Terada T. Coarse-grained molecular dynamics simulations of protein-ligand binding. J Comput Chem, 2014, 35(25): 1835-1845.
|
| 21. |
Chen P, Zhang Z, Gu N, et al. Effect of the surface charge density of nanoparticles on their translocation across pulmonary surfactant monolayer: a molecular dynamics simulation. Mol Simulat, 2018, 44(2): 85-93.
|
| 22. |
Anjum S, Ishaque S, Fatima H, et al. Emerging applications of nanotechnology in healthcare systems: grand challenges and perspectives. Pharmaceuticals, 2021, 14(8): 707.
|
| 23. |
Zhu Y, Gu Z, Liao Y, et al. Improved intestinal absorption and oral bioavailability of astaxanthin using poly(ethylene glycol)‐graft‐chitosan nanoparticles: preparation, in vitro evaluation, and pharmacokinetics in rats. J Sci Food Agric, 2022, 102(3): 1002-1011.
|
| 24. |
Del P M, Caballero F I, Meza-toledo J, et al. Formulations of curcumin nanoparticles for brain diseases. Biomolecules, 2019, 9(2): 56.
|
| 25. |
Guo H, Tai Z, Liu F, et al. Research and application of kupffer cell thresholds for BSA nanoparticles. Molecules, 2023, 28(2): 880.
|
| 26. |
Shen Z, Ye H, Li Y. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation. Phys Chem Chem Phys, 2018, 20(24): 16372-16385.
|
| 27. |
Hossain S, Gandhi N S, Hughes Z E, et al. Computational studies of lipid-wrapped gold nanoparticle transport through model lung surfactant monolayers. J Phys Chem B, 2021, 125(5): 1392-1401.
|
| 28. |
Souza F R, Fornasier F, Carvalho A S, et al. Polymer-coated gold nanoparticles and polymeric nanoparticles as nanocarrier of the BP100 antimicrobial peptide through a lung surfactant model. J Mol Liq, 2020, 314: 113661.
|
| 29. |
Ozmaian M, Freitas B A, Coalson R D. Controlling the surface properties of binary polymer brush-coated colloids via targeted nanoparticles. J Phys Chem B, 2019, 123(1): 258-265.
|
| 30. |
Gong M, Chen Z, Zhou L, et al. Application of mesoscale simulation to explore the pH response of Eudragit S100 used as the novel colon-targeted powder of Pulsatilla saponin D. J Nanomater, 2021, 2021: 9556911.
|
| 31. |
Bu X, Ji N, Dai L, et al. Self-assembled micelles based on amphiphilic biopolymers for delivery of functional ingredients. Trends Food Sci Tech, 2021, 114: 386-398.
|
| 32. |
Seif M, Montazeri A. Molecular dynamics simulation reveals the reliability of Brij-58 nanomicellar drug delivery systems for flurbiprofen. J Mol Liq, 2022, 360: 119496.
|
| 33. |
Wu W, Gu Y, Li W, et al. Understanding the synergistic correlation between the spatial distribution of drug-loaded mixed micellar systems and in vitro behavior via experimental and computational approaches. Mol Pharm, 2021, 18(4): 1643-1655.
|
| 34. |
Wu W, Zou Z, Yang S, et al. Coarse-grained molecular dynamic and experimental studies on self-assembly behavior of nonionic F127/HS15 mixed micellar systems. Langmuir, 2020, 36(8): 2082-2092.
|
| 35. |
Raman A S, Vishnyakov A, Chiew Y C. A coarse-grained model for PCL: conformation, self-assembly of MePEG-b-PCL amphiphilic diblock copolymers. Mol Simulat, 2017, 43(2): 92-101.
|
| 36. |
Liu Y, Zhao F, Dun J, et al. Lecithin/isopropyl myristate reverse micelles as transdermal insulin carriers: Experimental evaluation and molecular dynamics simulation. J Drug Deliv Sci Technol, 2020, 59: 101891.
|
| 37. |
侯萍, 李銘, 馬軍, 等. 天然高分子材料水凝膠的制備及其應用進展. 高分子通報, 2022, 280(8): 29-36.
|
| 38. |
Salahshoor H, Rahbar N. Multi-scale mechanical and transport properties of a hydrogel. J Mech Behav Biomed Mater, 2014, 37: 299-306.
|
| 39. |
Wang L, Zhou M, Xu T, et al. Multifunctional hydrogel as wound dressing for intelligent wound monitoring. Chem Eng J, 2022, 433: 134625.
|
| 40. |
張曼玉, 樓晨曦, 曹傲能. 主動靶向載藥脂質體在腫瘤治療中的研究進展. 生物醫學工程學雜志, 2022, 39(3): 633-638.
|
| 41. |
Yang B, Song B P, Shankar S, et al. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci, 2021, 78(13): 5225-5243.
|
| 42. |
Winter N D, Murphy R K J, O’halloran T V, et al. Development and modeling of arsenic-trioxide-loaded thermosensitive liposomes for anticancer drug delivery. J Liposome Res, 2011, 21(2): 106-115.
|
| 43. |
Larsson P, Alskar L C, Bergstrom C A S. Molecular structuring and phase transition of lipid-based formulations upon water dispersion: a coarse-grained molecular dynamics simulation approach. Mol Pharm, 2017, 14(12): 4145-4153.
|
| 44. |
Rezaei N, Mehrnejad F, Vaezi Z, et al. Encapsulation of an endostatin peptide in liposomes: Stability, release, and cytotoxicity study. Colloids Surf B Biointerfaces, 2020, 185: 110552.
|
| 45. |
Li Z, Zhang Y, Ma J, et al. Modeling interactions between liposomes and hydrophobic nanosheets. Small, 2019, 15(6): 1804992.
|