| 1. |
邢盼盼, 馬宇鋒, 李彧. 顳下頜關節紊亂病的MRI圖像特點及與臨床癥狀相關性研究進展. 山東醫藥, 2019, 59(8): 107-110.
|
| 2. |
郭宇峰. CBCT三維成像技術在口腔醫學領域中應用探究. 中國醫療器械信息, 2023, 29(16): 136-138.
|
| 3. |
傅開元, 胡敏, 余強, 等. 顳下頜關節紊亂病錐形束CT檢查規范及診斷標準的專家共識. 中華口腔醫學雜志, 2020, 55(9): 613-616.
|
| 4. |
楊曉豐, 趙陽, 劉奕. 顳下頜關節紊亂病的醫學影像學診斷方法. 中國實用口腔科雜志, 2023, 16(2): 152-155.
|
| 5. |
Jang T J, Kim K C, Cho H C, et al. A fully automated method for 3D individual tooth identification and segmentation in dental CBCT. IEEE Trans Pattern Anal Mach Intell, 2022, 44(10): 6562-6568.
|
| 6. |
Yang Y, Xie R, Jia W, et al. Accurate and automatic tooth image segmentation model with deep convolutional neural networks and level set method. Neurocomputing, 2021, 419: 108-125.
|
| 7. |
Liu Y, Xin R, Yang T, et al. Inferior alveolar nerve segmentation in CBCT images using connectivity-based selective re-training. arXiv preprint, 2023, arXiv: 2308.09298.
|
| 8. |
Liu Z, Yang D, Zhang M, et al. Inferior Alveolar nerve canal segmentation on CBCT using U-Net with frequency attentions. Bioengineering, 2024, 11(4): 354.
|
| 9. |
Chen L C, Papandreou G, Kokkinos I, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell, 2018, 40(4): 834-848.
|
| 10. |
Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention 2015 (MICCAI 2015): 18th International Conference, Munich: MICCAI, 2015: 234-241.
|
| 11. |
?i?ek ?, Abdulkadir A, Lienkamp S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation// Medical Image Computing and Computer-Assisted Intervention 2016 (MICCAI 2016): 19th International Conference, Athens: MICCAI, 2016: 424-432.
|
| 12. |
Schlemper J, Oktay O, Schaap M, et al. Attention gated networks: learning to leverage salient regions in medical images. Medical Image Analysis, 2019, 53: 197-207.
|
| 13. |
Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint, 2021, arXiv: 2102.04306.
|
| 14. |
Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation//European Conference on Computer Vision, Tel Aviv: European Computer Vision Association, 2022: 205-218.
|
| 15. |
Liu Z, Lin Y, Cao Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows//Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal: IEEE/CVF, 2021: 10012-10022.
|
| 16. |
Hospedales T, Antoniou A, Micaelli P, et al. Meta-learning in neural networks: A survey. IEEE Trans Pattern Anal Mach Intell, 2022, 44(9): 5149-5169.
|
| 17. |
Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets//Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal: NIPS, 2014, 2: 2672–2680.
|
| 18. |
Zhang C, Lin G, Liu F, et al. CANet: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach: IEEE/CVF, 2019: 5217-5226.
|
| 19. |
Dong N, Xing E P. Few-shot semantic segmentation with prototype learning//British Machine Vision Conference 2018, Newcastle: British Machine Vision Association, 2018: 4.
|
| 20. |
Lai X, Tian Z, Jiang L, et al. Semi-supervised semantic segmentation with directional context-aware consistency// IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville: IEEE/CVF, 2021: 1205-1214.
|
| 21. |
Ouyang C, Biffi C, Chen C, et al. Self-supervision with superpixels: training few-shot medical image segmentation without annotation//Computer Vision–ECCV 2020: 16th European Conference, Glasgow: European Computer Vision Association, 2020: 762-780.
|
| 22. |
白人駒, 徐克. 醫學影像學. 第七版. 北京: 人民衛生出版社, 2013: 1-408.
|
| 23. |
Laine S, Aila T. Temporal ensembling for semi-supervised learning. arXiv preprint, 2016, arXiv: 1610.02242.
|
| 24. |
Zhou Z, Siddiquee M M R, Tajbakhsh N, et al. UNet++: a nested U-Net architecture for medical image segmentation. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018), 2018, 11045: 3-11.
|
| 25. |
Lee Y H, Hong I K, An J S. Anterior joint space narrowing in patients with temporomandibular disorder. J Orofac Orthop, 2019, 80(3): 116-127.
|