| 1. |
Bartolomei F, Lagarde S, Wendling F, et al. 癲癇網絡的定義: 立體腦電圖和信號分析的貢獻, 鄭舒暢, 譯. 癲癇雜志, 2018, 4(2): 135-149.
|
| 2. |
單寶蓮, 張力新, 徐舫舟, 等. 基于腦電信號的癲癇發作預測特征及識別. 生物化學與生物物理進展, 2023, 50(2): 322-333.
|
| 3. |
Thanh L T, Dao N T A, Dung N V, et al. Multi-channel EEG epileptic spike detection by a new method of tensor decomposition. J Neural Eng, 2020, 17(1): 016023.
|
| 4. |
朱丹. 癲癇的診斷與治療—臨床實踐與思考. 北京: 人民衛生出版社, 2017: 624-700.
|
| 5. |
蹇兆鑫. 顳葉癲癇小鼠海馬網絡中的高—低頻信號研究. 成都: 電子科技大學, 2023.
|
| 6. |
王小艷. 基于多尺度轉移網絡的非線性時間序列分析. 上海: 華東師范大學, 2023.
|
| 7. |
Gao Z, Yang Y, Cai Q. Temporal complex network analysis//Hu L, Zhang Z. EEG signal processing and feature extraction. Cham: Springer International Publishing, 2019: 287-300.
|
| 8. |
汪文杰, 姚旭峰. 基于人工智能的癲癇發作預測研究綜述. 軟件工程, 2024, 27(4): 1-5.
|
| 9. |
Yang Y, Zhou M, Niu Y, et al. Epileptic seizure prediction based on permutation entropy. Front Comput Neurosci, 2018: 12-55.
|
| 10. |
張瑞, 宋江玲, 胡文鳳. 癲癇腦電的特征提取方法綜述. 西北大學學報(自然科學版), 2016, 46(6): 781-788,794.
|
| 11. |
Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: the visibility graph. Proc Natl Acad Sci U S A, 2008, 105(13): 4972-4975.
|
| 12. |
任彥霖. 基于復雜網絡拓撲結構的腦電信號非線性分析. 江蘇: 中國礦業大學, 2023.
|
| 13. |
李霞, 李守偉. 基于EMD與DVG的非線性時間序列預測模型及其應用研究. 中國管理科學, 2022, 30(9): 275-286.
|
| 14. |
Ribeiro P M. Efficient and scalable algorithms for network motifs discovery. Portugal: Universidade Do Porto, 2011.
|
| 15. |
Sporns O, K?tter R. Motifs in brain networks. PLoS Biology, 2004, 2(11): e369.
|
| 16. |
Buckner R L, DiNicola L M. The brain's default network: updated anatomy, physiology and evolving insights. Nat Rev Neurosci, 2019, 20(10): 593-608.
|
| 17. |
Shen-Orr S S, Milo R, Mangan S, et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet, 2002, 31(1): 64-68.
|
| 18. |
Stephen M, Gu C, Yang H. Visibility graph based time series analysis. PLoS ONE, 2015, 10(11): e0143015.
|
| 19. |
韋雷. 難治性癲癇腦電背景活動的非線性特征. 南寧: 廣西醫科大學, 2020.
|
| 20. |
熊馨, 羅劍花, 武瑞鋒, 等. 基于微狀態方法的癲癇腦電信號識別研究. 傳感技術學報, 2022, 35(12): 1671-1677.
|
| 21. |
蔡冬梅, 周衛東, 劉凱, 等. 基于Hurst指數和SVM的癲癇腦電檢測方法. 中國生物醫學工程學報, 2010, 29(6): 836-840.
|
| 22. |
崔剛強, 夏良斌, 梁建峰, 等. 基于小波多尺度分析和極限學習機的癲癇腦電分類算法. 生物醫學工程學雜志, 2016, 33(6): 1025-1030,1038.
|
| 23. |
Wang Y, Weng T, Deng S, et al. Sampling frequency dependent visibility graphlet approach to time series. Chaos, 2019, 29(2): 023109.
|
| 24. |
Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science, 2002, 298(5594): 824-827.
|
| 25. |
Hamed K H. Improved finite-sample Hurst exponent estimates using rescaled range analysis. Water Resour Res, 2007, 43: W04413.
|
| 26. |
Bassingthwaighte J B, Raymond G M. Evaluating rescaled range analysis for time series. Ann Biomed Eng, 1994, 22: 432-444.
|
| 27. |
Bernabei J M, Li A, Revell A Y, et al. OpenNeuro. (2022-04-17)[2023-03-22]. https://openneuro.org/datasets/ds004100/versions/1.1.3.
|
| 28. |
Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain, 2008, 131(Pt 7): 1818-1830.
|
| 29. |
劉曉燕. 臨床腦電圖學(第2版). 北京: 人民衛生出版社, 2011: 179-193.
|
| 30. |
Sleimen-Malkoun R, Perdikis D, Müller V, et al. Brain dynamics of aging: multiscale variability of EEG signals at rest and during an auditory oddball task. eNeuro, 2015, 2(3): ENEURO. 0067-14.
|
| 31. |
Hagen E, Magnusson S H, Ness T V, et al. Brain signal predictions from multi-scale networks using a linearized framework. PLoS Comput Biol, 2022, 18(8): e1010353.
|
| 32. |
Delic J, Alhilali L M, Hughes M A, et al. White matter injuries in mild traumatic brain injury and posttraumatic migraines: Diffusion entropy analysis. Radiology, 2016, 279(3): 859-866.
|
| 33. |
Pan X, Hou L, Stephen M, et al. Evaluation of scaling invariance embedded in short time series. PLoS One, 2014, 9(12): e116128.
|
| 34. |
Cohen M X. Effects of time lag and frequency matching on phase-based connectivity. J Neurosci Methods, 2015, 250: 137-146.
|
| 35. |
蔣絲麗, 羅華, 阮江海. 基于EEG的失神癲癇發作間期腦功能連接動態改變. 北京生物醫學工程, 2022, 41(4): 368-373.
|
| 36. |
Hadra M, Omidvarnia A, Mesbah M. Temporal complexity of EEG encodes human alertness. Physiol Meas, 2022, 43(9): 095002.
|
| 37. |
Liu Y, Zeng W, Pan N, et al. EEG complexity correlates with residual consciousness level of disorders of consciousness. BMC Neurol. 2023, 23(1): 140.
|