| 1. |
Hassan Z, Hadian R M, Hussain A S, et al. Comparison of the conjunct effects of electrical stimulation and whole-body vibration therapy with transcranial direct current stimulation and whole-body vibration therapy on balance and function in children with spastic cerebral palsy. Cureus, 2024, 16(6): e61511.
|
| 2. |
Emilia A, Monica P, Elisabetta P, et al. Changes in leg cycling muscle synergies after training augmented by functional electrical stimulation in subacute stroke survivors: a pilot study. J Neuroeng Rehabil, 2020, 17: 35.
|
| 3. |
Kapadia N, Moineau B, Popovic M R. Functional electrical stimulation therapy for retraining reaching and grasping after spinal cord injury and stroke. Front Neurosci, 2020, 14: 718.
|
| 4. |
Zhuo L, Jingwei G, Ruidong G, et al. Rehabilitation effect of core muscle training combined with functional electrical stimulation on lower limb motor and balance functions. J Back Musculoskelet, 2023, 37(2): 347-354.
|
| 5. |
Mizrahi J. Review on fatigue in muscles by functional electrical stimulation. Crit Rev Phys Rehabil Med, 2017, 29(1-4): 103-142.
|
| 6. |
Olusola M I, Azah N H, Khairi A W A, et al. Quadriceps mechanomyography reflects muscle fatigue during electrical stimulus-sustained standing in adults with spinal cord injury-a proof of concept. Biomed Tech, 2020, 65(2): 165-174.
|
| 7. |
Shahdoost S, Frost S B, Guggenmos D J, et al. A brain-spinal interface (BSI) system-on-chip (SoC) for closed-loop cortically-controlled intraspinal microstimulation. Analog Integr Circuits Signal Process, 2018, 95: 1-16.
|
| 8. |
Sunshine M D, Ganji C N, Fuller D D, et al. Respiratory resetting elicited by single pulse spinal stimulation. Respir Physiol Neurobiol, 2020, 274: 103339.
|
| 9. |
Pikov V, McCreery DB, Han M. Intraspinal stimulation with a silicon-based 3D chronic microelectrode array for bladder voiding in cats. J Neural Eng, 2020, 17(6): 065004.
|
| 10. |
Omar T, Martin D H, Sean F, et al. In-vivo testing of a novel wireless intraspinal microstimulation interface for restoration of motor function following spinal cord injury. Artif Organs, 2023, 48(3): 263-273.
|
| 11. |
Amirali T, Everaert D G, Perlmutter S I, et al. Functional organization of motor networks in the lumbosacral spinal cord of non-human primates. Sci Rep, 2019, 9(1): 13539.
|
| 12. |
Andreas R, Salif K, Robin D, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med, 2022, 28(2): 260-271.
|
| 13. |
Holinski B J, Mazurek K A, Everaert D G, et al. Intraspinal microstimulation produces over-ground walking in anesthetized cats. J Neural Eng, 2016, 13(5): 056016.
|
| 14. |
Rouhani E, Erfanian A. Block-based robust control of stepping using intraspinal microstimulation. J Neural Eng, 2018, 15(4): 046026.
|
| 15. |
Arash S H, Ehsan S Z, Navid E, et al. Musculoskeletal modeling and control of the lower limb in cycling using an optimal central pattern generator. IJST-T Mech Eng, 2023, 47(3): 1121-1130.
|
| 16. |
Su H, Jing L, Lv D, et al. Central pattern generators in spinal cord injury: mechanisms, modulation, and therapeutic strategies for motor recovery. JOR spine, 2025, 8(3): e70100.
|
| 17. |
董瑋, 王如彬, 張志康. 探討生物體節律性步態運動的特點. 力學季刊, 2010, 31(2): 186-193.
|
| 18. |
Prilutsky B I, Parker J, Cymbalyuk G S, et al. Emergence of extreme paw accelerations during cat paw shaking: interactions of spinal central pattern generator, hindlimb mechanics and muscle length-depended feedback. Front Integr Neurosci, 2022, 16: 810139.
|
| 19. |
Shen X, Wang X, Lu S, et al. Research on the real-time control system of lower-limb gait movement based on motor imagery and central pattern generator. Biomed Signal Process Control, 2022, 71: 102803.
|
| 20. |
Deniz K, Gonca K O, Guoyuan L, et al. Locomotion control of a biomimetic robotic fish based on closed loop sensory feedback CPG model. J Mar Eng Technol, 2019, 20(2): 125-137.
|
| 21. |
Xiaoyan S, Tinghui S, Zhiling L, et al. Generation of locomotor like activity using monopolar intraspinal electrical microstimulation in rats. Exp Ther Med, 2023, 26(6): 560.
|
| 22. |
Heravi M A Y, Maghooli K, Rahatabad F N, et al. Cortico-spinal neural interface to restore hindlimb movements in spinally-injured rabbits. Neurophysiology, 2020, 52: 375-387.
|
| 23. |
汪震東, 張艷. 四旋翼無人機預測-PID復合控制研究. 控制工程, 2021, 28(7): 1390-1397.
|
| 24. |
陸薇, 譚英麗, 王文君, 等. 一種基于STM32單片機的手部運動機能康復訓練系統設計. 現代信息科技, 2024, 8(5): 59-63.
|
| 25. |
余歡樂, 方永鋒. 基于模糊自整定PID的溫室溫度控制系統設計及仿真. 江蘇農業科學, 2016, 44(12): 383-386.
|
| 26. |
黃瀟, 唐求, 周朝霞, 等. 用于生物電阻抗譜測量的程控寬頻恒流源設計. 電子測量與儀器學報, 2021, 35(4): 145-153.
|
| 27. |
文家昌. 基于LabVIEW機器視覺的產品檢測平臺設計與應用. 上海: 華南理工大學, 2012.
|
| 28. |
Asadi A R, Erfanian A. Adaptive neuro-fuzzy sliding mode control of multi-joint movement using intraspinal microstimulation. IEEE Trans Neural Syst Rehabil Eng, 2012, 20(4): 499-509.
|
| 29. |
侯潤宇. 脊髓硬膜外電刺激對步行CPG可塑性的影響. 北京: 中國人民解放軍醫學院, 2014.
|
| 30. |
肖碩勤, 賈貴軍. 腦機接口聯合電刺激用于脊髓損傷后康復治療的研究進展. 國際神經病學神經外科學雜志, 2025, 52(3): 66-72.
|
| 31. |
Ali Eisha, Kamran Sheza, Asad Ali Ahmed Cheema, et al. Brain-computer interfaces in post-stroke rehabilitation: a neurotechnological leap toward functional recovery. Ann Med Surg, 2025, 87(11): 7784-7785.
|