| 1. |
Chen J, Xu T, Zhou J, et al. The superiority of schroth exercise combined brace treatment for mild-to-moderate adolescent idiopathic scoliosis: a systematic review and network meta-analysis. World Neurosurg, 2024, 186: 184-196.
|
| 2. |
Grivas T B, Vasiliadis E, Chatzizrgiropoyos T, et al. The effect of a modified Boston brace with anti-rotatory blades on the progression of curves in idiopathic scoliosis: aetiologic implications. Pediatric Rehabilitation, 2003, 6(3-4): 237-242.
|
| 3. |
Cheng J C, Castelein R M, Chu W C, et al. Adolescent idiopathic scoliosis. Nature Reviews Disease Primers, 2015, 1: 15030.
|
| 4. |
Whitaker C M, Miyanji F, Samdani A F, et al. Prospectively collected comparison of outcomes between surgically and conservatively treated patients with adolescent idiopathic scoliosis. Spine, 2024, 49(17): 1210-1218.
|
| 5. |
Konieczny M R, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. Journal of Children's Orthopaedics, 2013, 7(1): 3-9.
|
| 6. |
茍春燕, 張玉婷, 聶國輝, 等. 三維打印椎間融合器的研究進展. 生物醫學工程學雜志, 2021, 38(5): 1018-1027.
|
| 7. |
趙海恩, 任坤, 董鑫, 等. 單一體位下斜外側腰椎椎間融合術聯合椎間孔鏡下減壓治療L_(5),S_(1)椎間盤突出伴椎管狹窄四例. 中國修復重建外科雜志, 2024, 38(7): 896-898.
|
| 8. |
孫彬. 3D打印拓撲優化個體化定制頸椎椎間融合器的研發及其生物力學研究. 長春: 吉林大學, 2023.
|
| 9. |
Ma Q, Miri Z, Haugen H J, et al. Significance of mechanical loading in bone fracture healing, bone regeneration, and vascularization. Journal of Tissue Engineering, 2023, 14: 20417314231172573.
|
| 10. |
武曉剛. 骨的多孔介質彈性力學行為及力—電效應研究. 太原: 太原理工大學, 2012.
|
| 11. |
Yang X, Fu R, Li P, et al. Biomechanical finite element analysis of bone tissues with different scales in the bone regeneration area after scoliosis surgery. Journal of Medical and Biological Engineering, 2024, 44: 401-411.
|
| 12. |
Duncan R L, Turner C H. Mechanotransduction and the functional response of bone to mechanical strain. Calcified Tissue International, 1995, 57(5): 344-358.
|
| 13. |
Olivares-Navarrete R, Gittens R A, Schneider J M, et al. Osteoblasts exhibit a more differentiated phenotype and increased bone morphogenetic protein production on titanium alloy substrates than on poly-ether-ether-ketone. The Spine Journal, 2012, 12(3): 265-272.
|
| 14. |
王召耀, 富榮昌, 馬原, 等. 特發性脊柱側凸骨單元宏細觀生物力學分析. 生物醫學工程學雜志, 2023, 40(2): 303-312.
|
| 15. |
Wang Y, Dong H, Yan Y, et al. Biomechanical analysis of a lacunar-canalicular system under different cyclic displacement loading. Computer Methods in Biomechanics and Biomedical Engineering, 2023, 26(15): 1806-1821.
|
| 16. |
顏華東, 張中, 趙剛, 等. 有限元法分析不同固定方式在脛骨遠端粉碎性骨折骨愈合中的生物力學差異. 中國組織工程研究, 2024, 28(24): 3814-3821.
|
| 17. |
Wang H, Fu R, Yang K. Kinetic characterization of adolescent scoliosis patients with Lenke 1B. Acta of Bioengineering & Biomechanics, 2024, 26(3): 75-86.
|
| 18. |
Zhang H, Fu R. Macro-meso-micro biomechanical analysis of the lumbar spine after pedicle subtraction osteotomy for idiopathic scoliosis. Journal of Shanghai Jiaotong University (Science), 2024. DOI: 10.1007/s12204-024-2788-y.
|
| 19. |
Guan T, Zhang Y F. Determination of three-dimensional corrective force in adolescent idiopathic scoliosis and biomechanical finite element analysis. Frontiers in Bioengineering and Biotechnology, 2020, 8: 963.
|
| 20. |
Cao F, Fu R, Wang W. Comparison of biomechanical performance of single-level triangular and quadrilateral profile anterior cervical plates. PloS One, 2021, 16(4): e0250270.
|
| 21. |
盧昌懷, 劉志軍, 晏峻峰, 等. Lenke1AN型青少年特發性脊柱側凸不同置棒順序矯形的有限元分析. 中國矯形外科雜志, 2019, 27(19): 1780-1784.
|
| 22. |
Wang Z, Fu R, Ye P. Topology optimization design and mechanical analysis of a personalized lumbar fusion device. Journal of Mechanics in Medicine and Biology, 2023, 24(3): 2350043.
|
| 23. |
龍登燕, 紀愛敏, 趙仲航, 等. 基于骨愈合過程的內固定物參數研究. 生物醫學工程研究, 2019, 38(3): 286-291.
|
| 24. |
Wang L, Dong J, Xian C J. Strain amplification analysis of an osteocyte under static and cyclic loading: a finite element study. BioMed Research International, 2015, 2015: 376474.
|
| 25. |
Markolf K L. Deformation of the thoracolumbar intervertebral joints in response to external loads: a biomechanical study using autopsy material. The Journal of Bone and Joint Surgery. American Volume, 1972, 54(3): 511-533.
|
| 26. |
王宏衛, 劉新宇, 萬熠. 人體腰椎L4~L5段有限元模型建立及力學有效性驗證. 醫學與哲學(B), 2017, 38(5): 50-53.
|
| 27. |
Kallemeyn N A, Tadepalli S C, Shivanna K H, et al. An interactive multiblock approach to meshing the spine. Computer Methods and Programs in Biomedicine, 2009, 95(3): 227-235.
|
| 28. |
Bozyi?it B, Oymak M A, Bah?e E et al. Finite element analysis of lattice designed lumbar interbody cage based on the additive manufacturing. Proc Inst Mech Eng H, 2023, 237(8): 991-1000.
|
| 29. |
Momeni Shahraki N, Fatemi A, Goel VK, et al. On the use of biaxial properties in modeling annulus as a Holzapfel-Gasser-Ogden material. Frontiers in Bioengineering and Biotechnology, 2015, 3: 69.
|
| 30. |
Spilker R L, Simon B R. Computational methods in bioengineering. England: ASME, 1988: 135-144.
|
| 31. |
Markolf K L, Morris J M. The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am, 1974, 56(4): 675-687.
|
| 32. |
Brown T, Hansen R J, Yorra A J. Some mechanical tests on the lumbosacral spine with particular reference to the intervertebral discs; a preliminary report. J Bone Joint Surg Am, 1957, 39(5): 1135-1164.
|
| 33. |
Yamamoto I, Panjabi M M, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine, 1989, 14(11): 1256-1260.
|
| 34. |
方新果, 趙改平, 王晨曦, 等. 基于CT圖像腰椎L4L5節段有限元模型建立與分析. 中國生物醫學工程學報, 2014, 33(4): 487-492.
|
| 35. |
Schultz A B, Warwick D N, Berkson M H, et al. Mechanical properties of human lumbar spine motion segments-part I: responses in flexion, extension, bilateral lateral bending and torsin. Journal of Biomechanical Engineering, 1979, 101(1): 46-52.
|
| 36. |
Chen C S, Cheng C K, Liu C L, et al. Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering and Physics, 2001, 23(7): 483-491.
|
| 37. |
Frost M H. A 2003 update of bone physiology and Wolff's Law for clinicians. The Angle Orthodontist, 2004, 74(1): 3-15.
|