| 1. |
Vaduganathan M, Mensah G A, Turco J V, et al. The global burden of cardiovascular diseases and risk: a compass for future health. J Am Coll Cardiol, 2022, 80(25): 2361-2371.
|
| 2. |
《中國卒中中心報告2022》編寫組. 《中國卒中中心報告2022》概要. 中國腦血管病雜志, 2024, 21(8): 565-576.
|
| 3. |
Yates A G, Pink R C, Erdbrügger U, et al. In sickness and in health: the functional role of extracellular vesicles in physiology and pathology in vivo: part II: pathology. J Extracell Vesicles, 2022, 11(1): e12190.
|
| 4. |
張冬雪, 鄒偉. 外泌體對缺血性卒中的作用機制及研究進展. 中國卒中雜志, 2022, 17(4): 418-425.
|
| 5. |
謝國民, 呂中月, 趙翠, 等. 干細胞來源的細胞外囊泡治療急性缺血性卒中的研究進展. 心電與循環, 2024, 43(5): 432-436, 453.
|
| 6. |
楊淵. 神經干細胞外泌體通過miR-125b-2-3p/B2M/TFRC調控鐵死亡影響腦缺血再灌注損傷的機制研究. 昆明: 昆明醫科大學, 2024.
|
| 7. |
Guggeis M A, Harris D M, Welz L, et al. Microbiota-derived metabolites in inflammatory bowel disease. Semin Immunopathol, 2025, 47(1): 19.
|
| 8. |
Schaible P, Henschel J, Erny D. How the gut microbiota impacts neurodegenerative diseases by modulating CNS immune cells. J Neuroinflammation, 2025, 22(1): 60.
|
| 9. |
Nakhal M M, Yassin L K, Alyaqoubi R, et al. The microbiota-gut-brain axis and neurological disorders: a comprehensive review. Life (Basel), 2024, 14(10): 1234.
|
| 10. |
Zhu Z, Yang P, Jia Y, et al. Plasma amino acid neurotransmitters and ischemic stroke prognosis: a multicenter prospective study. Am J Clin Nutr, 2023, 118(4): 754-762.
|
| 11. |
Wang L, Qin N, Shi L, et al. Gut microbiota and tryptophan metabolism in pathogenesis of ischemic stroke: a potential role for food homologous plants. Mol Nutr Food Res, 2024, 68(23): e2400639.
|
| 12. |
Wei J, Wang G, Lai M, et al. Faecal microbiota transplantation alleviates ferroptosis after ischaemic stroke. Neuroscience, 2024, 541: 91-100.
|
| 13. |
Zhang Y, Yang H, Hou S, et al. Influence of the brain gut axis on neuroinflammation in cerebral ischemia reperfusion injury (Review). Int J Mol Med, 2024, 53(3): 30.
|
| 14. |
Benakis C, Brea D, Caballero S, et al. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδ T cells. Nat Med, 2016, 22(5): 516-523.
|
| 15. |
Xin H, Zhang X, Li P, et al. Bifidobacterium bifidum supplementation improves ischemic stroke outcomes in elderly patients: a retrospective study. Medicine (Baltimore), 2024, 103(14): e37682.
|
| 16. |
Zhang W, Dong X Y, Huang R. Gut microbiota in ischemic stroke: role of gut bacteria-derived metabolites. Transl Stroke Res, 2023, 14(6): 811-828.
|
| 17. |
Zhang F, Deng Y, Wang H, et al. Gut microbiota-mediated ursodeoxycholic acids regulate the inflammation of microglia through TGR5 signaling after MCAO. Brain Behav Immun, 2024, 115: 667-679.
|
| 18. |
Huang Q, Xia J. Influence of the gut microbiome on inflammatory and immune response after stroke. Neurol Sci, 2021, 42(12): 4937-4951.
|
| 19. |
DeBoer M D, Filipp S L, Sims M, et al. Risk of ischemic stroke increases over the spectrum of metabolic syndrome severity. Stroke, 2020, 51(8): 2548-2552.
|
| 20. |
Adnan S, Nelson J W, Ajami N J, et al. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics, 2017, 49(2): 96-104.
|
| 21. |
Jonsson A L, B?ckhed F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol, 2017, 14(2): 79-87.
|
| 22. |
Islam M R, Arthur S, Haynes J, et al. The role of gut microbiota and metabolites in obesity-associated chronic gastrointestinal disorders. Nutrients, 2022, 14(3): 624.
|
| 23. |
Xing J, Niu T, Yu T, et al. Faecalibacterium prausnitzii-derived outer membrane vesicles reprogram gut microbiota metabolism to alleviate porcine epidemic diarrhea virus infection. Microbiome, 2025, 13(1): 90.
|
| 24. |
Wang X, Lin S, Wang L, et al. Versatility of bacterial outer membrane vesicles in regulating intestinal homeostasis. Sci Adv, 2023, 9(11): eade5079.
|
| 25. |
Wu Y, Huang X, Li Q, et al. Reducing severity of inflammatory bowel disease through colonization of Lactiplantibacillus plantarum and its extracellular vesicles release. J Nanobiotechnology, 2025, 23(1): 227.
|
| 26. |
Pitt N, Morrissette M, Gates M F, et al. Bacterial membrane vesicles restore gut anaerobiosis. NPJ Biofilms Microbiomes, 2025, 11(1): 48.
|
| 27. |
Yang Y, Li N, Gao Y, et al. The activation impact of Lactobacillus-derived extracellular vesicles on lipopolysaccharide-induced microglial cell. BMC Microbiol, 2024, 24(1): 70.
|
| 28. |
Tao S, Fan J, Li J, et al. Extracellular vesicles derived from Lactobacillus johnsonii promote gut barrier homeostasis by enhancing M2 macrophage polarization. J Adv Res, 2025, 69: 545-563.
|
| 29. |
Nie X, Li Q, Ji H, et al. Bifidobacterium longum NSP001-derived extracellular vesicles ameliorate ulcerative colitis by modulating T cell responses in gut microbiota-(in)dependent manners. NPJ Biofilms Microbiomes, 2025, 11(1): 27.
|
| 30. |
Tang W, Ni Z, Wei Y, et al. Extracellular vesicles of Bacteroides uniformis induce M1 macrophage polarization and aggravate gut inflammation during weaning. Mucosal Immunol, 2024, 17(5): 793-809.
|
| 31. |
Kim J Y, Kim C W, Oh S Y, et al. Akkermansia muciniphila extracellular vesicles have a protective effect against hypertension. Hypertens Res, 2024, 47(6): 1642-1653.
|
| 32. |
Ashrafian F, Shahriary A, Behrouzi A, et al. Akkermansia muciniphila-derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice. Front Microbiol, 2019, 10: 2155.
|
| 33. |
Shi J, Ma D, Gao S, et al. Probiotic Escherichia coli Nissle 1917-derived outer membrane vesicles modulate the intestinal microbiome and host gut-liver metabolome in obese and diabetic mice. Front Microbiol, 2023, 14: 1219763.
|
| 34. |
Vaezijoze S, Irani S, Siadat S D, et al. Modulation of satiety hormones by Bacteroides thetaiotaomicron, Bacteroides fragilis and their derivatives. AMB Express, 2025, 15(1): 41.
|
| 35. |
Zakharzhevskaya N B, Vanyushkina A A, Altukhov I A, et al. Outer membrane vesicles secreted by pathogenic and nonpathogenic Bacteroides fragilis represent different metabolic activities. Sci Rep, 2017, 7(1): 5008.
|
| 36. |
Olivo-Martínez Y, Martínez-Ruiz S, Cordero-Alday C, et al. Modulation of serotonin-related genes by extracellular vesicles of the probiotic Escherichia coli Nissle 1917 in the interleukin-1β-induced inflammation model of intestinal epithelial cells. Int J Mol Sci, 2024, 25(10): 5338.
|
| 37. |
楊樟. 植物乳桿菌來源的細胞外囊泡通過miR-101a-3p減少缺血性卒中后神經元凋亡的作用及其機制研究. 貴陽: 貴州醫科大學, 2022.
|
| 38. |
Gilmore W J, Johnston E L, Bitto N J, et al. Bacteroides fragilis outer membrane vesicles preferentially activate innate immune receptors compared to their parent bacteria. Front Immunol, 2022, 13: 970725.
|
| 39. |
Bittel M, Reichert P, Sarfati I, et al. Visualizing transfer of microbial biomolecules by outer membrane vesicles in microbe-host-communication in vivo. J Extracell Vesicles, 2021, 10(12): e12159.
|
| 40. |
Kim J H, Lee J, Park J, et al. Gram-negative and gram-positive bacterial extracellular vesicles. Semin Cell Dev Biol, 2015, 40: 97-104.
|
| 41. |
Stentz R, Jones E, Juodeikis R, et al. The proteome of extracellular vesicles produced by the human gut bacteria Bacteroides thetaiotaomicron in vivo is influenced by environmental and host-derived factors. Appl Environ Microbiol, 2022, 88(16): e0053322.
|
| 42. |
Wang L, Zhang X, Yang Z, et al. Extracellular vesicles: biological mechanisms and emerging therapeutic opportunities in neurodegenerative diseases. Transl Neurodegener, 2024, 13(1): 60.
|
| 43. |
Kaisanlahti A, Salmi S, Kumpula S, et al. Bacterial extracellular vesicles-brain invaders? a systematic review. Front Mol Neurosci, 2023, 16: 1227655.
|
| 44. |
Ji N, Wang F, Wang M, et al. Engineered bacterial extracellular vesicles for central nervous system diseases. J Control Release, 2023, 364: 46-60.
|
| 45. |
Zheng K, Feng Y, Li L, et al. Engineered bacterial outer membrane vesicles: a versatile bacteria-based weapon against gastrointestinal tumors. Theranostics, 2024, 14(2): 761-787.
|
| 46. |
Guan M, Xie X T, Zhou D, et al. Engineered bacterial outer membrane vesicles hitchhiking on neutrophils for antibody drug delivery to enhance postoperative immune checkpoint therapy. Adv Sci (Weinh), 2025, 12(27): e2505000.
|