| 1. |
Sánchez E, Schilling C, Grupp T M, et al. No effect in primary stability after increasing interference fit in cementless TKA tibial components. J Mech Behav Biomed Mater, 2021, 118: 104435.
|
| 2. |
Fitzpatrick C K, Clary C W, Cyr A J, et al. Mechanics of post-cam engagement during simulated dynamic activity. J Orthop Res, 2013, 31(9): 1438-1446.
|
| 3. |
Watanabe T, Koga H, Horie M, et al. Post-cam design and contact stress on tibial posts in posterior-stabilized total knee prostheses: comparison between a rounded and a squared design. J Arthroplasty, 2017, 32(12): 3757-3762.
|
| 4. |
Nakayama K, Matsuda S, Miura H, et al. Contact stress at the post-cam mechanism in posterior-stabilised total knee arthroplasty. J Bone Joint Surg Br, 2005, 87(4): 483-488.
|
| 5. |
Zaffagnini S, Bignozzi S, Saffarini M, et al. Comparison of stability and kinematics of the natural knee versus a PS TKA with a 'third condyle'. Knee Surg Sports Traumatol Arthrosc, 2014, 22(8): 1778-1785.
|
| 6. |
Movassaghi K, Patel A, Ghulam-Jelani Z, et al. Modern total knee arthroplasty bearing designs and the role of the posterior cruciate ligament. Arthroplast Today, 2023, 21: 101130.
|
| 7. |
Arnout N, Vanlommel L, Vanlommel J, et al. Post-cam mechanics and tibiofemoral kinematics: a dynamic in vitro analysis of eight posterior-stabilized total knee designs. Knee Surg Sports Traumatol Arthrosc, 2015, 23(11): 3343-3353.
|
| 8. |
Meneghini R M, Daluga A, Soliman M. Mechanical stability of cementless tibial components in normal and osteoporotic bone. J Knee Surg, 2011, 24(3): 191-196.
|
| 9. |
Aujla R S, Esler C N. Total knee arthroplasty for osteoarthritis in patients less than fifty-five years of age: a systematic review. J Arthroplasty, 2017, 32(8): 2598-2603.
|
| 10. |
Dalury D F. Cementless total knee arthroplasty: current concepts review. Bone Joint J, 2016, 98-B(7): 867-873.
|
| 11. |
Sharkey P F, Lichstein P M, Shen C, et al. Why are total knee arthroplasties failing today--has anything changed after 10 years?. J Arthroplasty, 2014, 29(9): 1774-1778.
|
| 12. |
Quevedo Gonzalez F J, Lipman J D, Sculco P K, et al. An anterior spike decreases bone-implant micromotion in cementless tibial baseplates for total knee arthroplasty: a biomechanical study. J Arthroplasty, 2024, 39(5): 1323-1327.
|
| 13. |
Taylor M, Barrett D S, Deffenbaugh D. Influence of loading and activity on the primary stability of cementless tibial trays. J Orthop Res, 2012, 30(9): 1362-1368.
|
| 14. |
Solarino G, Carlet A, Moretti L, et al. Clinical results in posterior-stabilized total knee arthroplasty with cementless tibial component in porous tantalum: comparison between monoblock and two pegs vs modular and three pegs. Prosthesis, 2022, 4(2): 160-168.
|
| 15. |
Yang H, Bayoglu R, Clary C W, et al. Impact of patient, surgical, and implant design factors on predicted tray-bone interface micromotions in cementless total knee arthroplasty. J Orthop Res, 2023, 41(1): 115-129.
|
| 16. |
Morwood M P, Guss A D, Law J I, et al. Metaphyseal stem extension improves tibial stability in cementless total knee arthroplasty. J Arthroplasty, 2020, 35(10): 3031-3037.
|
| 17. |
Bhimji S, Meneghini R M. Micromotion of cementless tibial baseplates: keels with adjuvant pegs offer more stability than pegs alone. J Arthroplasty, 2014, 29(7): 1503-1506.
|
| 18. |
Fregly B J, Besier T F, Lloyd D G, et al. Grand challenge competition to predict in vivo knee loads. J Orthop Res, 2012, 30(4): 503-513.
|
| 19. |
Quevedo González F J, Lipman J D, Lo D, et al. Mechanical performance of cementless total knee replacements: It is not all about the maximum loads. J Orthop Res, 2019, 37(2): 350-357.
|
| 20. |
Yang H, Behnam Y, Clary C W, et al. Drivers of initial stability in cementless TKA: isolating effects of tibiofemoral conformity and fixation features. J Mech Behav Biomed Mater, 2022, 136: 105507.
|
| 21. |
Chen Z, Han J, Zhang J, et al. Tibial post loading increases the risk of aseptic loosening of posterior-stabilized tibial prosthesis. Proc Inst Mech Eng H, 2024, 238(8-9): 886-896.
|
| 22. |
馬張穩, 張兵, 薛敏, 等. UKA 脛骨托盤背部設計對骨-假體固定界面的生物力學影響. 醫用生物力學, 39(4): 637-643.
|
| 23. |
Ravishanker B B, Raghuvir P B, Satish S B, et al. Effect of polyethylene insert thickness and implant material on micromotions at the bone-implant surface with cemented TKA: a finite element study. Journal of Computational Methods in Science and Engineering, 2021, 21(3): 555-561.
|
| 24. |
Yang H, Bayoglu R, Clary C W, et al. Impact of surgical alignment, tray material, PCL condition, and patient anatomy on tibial strains after TKA. Med Eng Phys, 2021, 88: 69-77.
|
| 25. |
Sopher R S, Amis A A, Calder J D, et al. Total ankle replacement design and positioning affect implant-bone micromotion and bone strains. Med Eng Phys, 2017, 42: 80-90.
|
| 26. |
Chen Z, Zhang J, Gao Y, et al. Effects of interference assembly of a tibial insert on the tibiofemoral contact mechanics in total knee replacement. Proc Inst Mech Eng H, 2019, 233(9): 948-953.
|
| 27. |
Abdelgaied A, Liu F, Brockett C, et al. Computational wear prediction of artificial knee joints based on a new wear law and formulation. J Biomech, 2011, 44(6): 1108-1116.
|
| 28. |
Chong D Y R, Hansen U N, Amis A A. Cementless mis mini-keel prosthesis reduces interface micromotion versus standard stemmed tibial components. Journal of Mechanics in Medicine and Biology, 2016, 16(05): 1650070.
|
| 29. |
Glenday J D, Wright T M, Lipman J D, et al. Effect of varus alignment on the bone-implant interaction of a cementless tibial baseplate during gait. J Orthop Res, 2022, 40(4): 816-825.
|
| 30. |
陳瑱賢, 張志峰, 高永昌, 等. 后穩定型全膝關節假體的骨肌多體動力學研究. 生物醫學工程學雜志, 2022, 39(4): 651-659.
|
| 31. |
Han J, Zhang W, Zhang J, et al. Post-cam design influences the mechanics and interface micromotion of the tibial prosthesis fixation in posterior-stabilized total knee arthroplasty: comparison among three common designs. J Arthroplasty, 2025, 40(11): 3000-3007.
|