| 1. |
Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024, 74(3): 229-263.
|
| 2. |
Morgan E, Arnold M, Camargo M C, et al. The current and future incidence and mortality of gastric cancer in 185 countries, 2020-40: A population-based modelling study. EClinicalMedicine, 2022, 47: 101404.
|
| 3. |
Yang W J, Zhao H P, Yu Y, et al. Updates on global epidemiology, risk and prognostic factors of gastric cancer. World J Gastroenterol, 2023, 29(16): 2452-2468.
|
| 4. |
Lordick F, Carneiro F, Cascinu S, et al. Gastric cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann Oncol, 2022, 33(10): 1005-1020.
|
| 5. |
Hallinan J T P D, Venkatesh S K. Gastric carcinoma: Imaging diagnosis, staging and assessment of treatment response. Cancer Imaging, 2013, 13(2): 212-227.
|
| 6. |
Zhang Y, Yuan N, Zhang Z, et al. Unsupervised domain selective graph convolutional network for preoperative prediction of lymph node metastasis in gastric cancer. Med Image Anal, 2022, 79: 102467.
|
| 7. |
胡倫瑜, 夏威, 李瓊, 等. 基于自監督預訓練和多任務學習的肺腺癌無復發生存期預測. 生物醫學工程學雜志, 2024, 41(2): 205-212.
|
| 8. |
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015. Cham: Springer, 2015: 234-241.
|
| 9. |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U-Net: Learning where to look for the pancreas. arXiv preprint arXiv, 2018: 1804.03999.
|
| 10. |
Zhou Z, Rahman Siddiquee M M, Tajbakhsh N, et al. UNet++: A nested U-Net architecture for medical image segmentation// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.
|
| 11. |
Shang H, Feng T, Han D, et al. Deep learning and radiomics for gastric cancer serosal invasion: Automated segmentation and multi-machine learning from two centers. J Cancer Res Clin Oncol, 2025, 151(2): 60.
|
| 12. |
Wang J, Zhang B, Wang Y, et al. CrossU-Net: Dual-modality cross-attention U-Net for segmentation of precancerous lesions in gastric cancer. Comput Med Imaging Graph, 2024, 112: 102339.
|
| 13. |
Chen J, Lu Y, Yu Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv, 2021: 2102.04306.
|
| 14. |
Hatamizadeh A, Tang Y, Nath V, et al. UNETR: Transformers for 3D medical image segmentation// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Waikoloa: IEEE, 2022: 1748-1758.
|
| 15. |
Cao H, Wang Y, Chen J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation// European Conference on Computer Vision (ECCV). Cham: Springer, 2022: 205-218.
|
| 16. |
Liu Y, Tian Y, Zhao Y, et al. VMamba: Visual state space model. Adv Neural Inf Process Syst, 2024, 37: 103031-103063.
|
| 17. |
Xing Z, Ye T, Yang Y, et al. SegMamba: Long-range sequential modeling Mamba for 3D medical image segmentation// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2024. Cham: Springer, 2024: 578-588.
|
| 18. |
Wang J, Zheng J, Ma L, et al. LKM-UNet: Large kernel vision Mamba U-Net for medical image segmentation// Medical Image Computing and Computer-Assisted Intervention–MICCAI 2024. Cham: Springer, 2024: 360-370.
|
| 19. |
Bansal S, Madisetty S, Rehman M Z U, et al. A comprehensive survey of Mamba architectures for medical image analysis: Classification, segmentation, restoration and beyond. arXiv preprint arXiv, 2024: 2410.02362.
|
| 20. |
Gu A, Dao T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv, 2023: 2312.00752.
|
| 21. |
Ma J, Li F, Wang B. U-Mamba: Enhancing long-range dependency for biomedical image segmentation. arXiv preprint arXiv, 2024: 2401.04722.
|
| 22. |
Ling T, Zuo Z, Huang M, et al. Stacking classifiers based on integrated machine learning model: fusion of CT radiomics and clinical biomarkers to predict lymph node metastasis in locally advanced gastric cancer patients after neoadjuvant chemotherapy. BMC Cancer, 2025, 25(1): 834.
|
| 23. |
Zheng G, Wang H, Chai X, et al. Interpretable deep learning for multicenter gastric cancer T staging from CT images. npj Digit Med, 2026, 9: 2.
|
| 24. |
Li L, Wang C, Geng Y, et al. Segment anything model for gastric cancer. Cancer Med, 2025, 14(18): e71246.
|
| 25. |
Bhardwaj P, Kumar S, Kumar Y. Deep learning techniques in gastric cancer prediction and diagnosis// 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). New York: IEEE, 2022: 843-850.
|
| 26. |
Kumar G M K, Chadha A, Mendola J, et al. MedVisionLlama: Leveraging pre-trained large language model layers to enhance medical image segmentation// Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops. New York: IEEE, 2025: 1114-1124.
|
| 27. |
Wu J, Fu R, Fang H, et al. Medical SAM adapter: Adapting segment anything model for medical image segmentation. Med Image Anal, 2025, 102: 103547.
|
| 28. |
Li Y, Lai Z, Bao W, et al. Visual large language models for generalized and specialized applications. arXiv preprint arXiv, 2025: 2501.02765.
|
| 29. |
Chen W, Liu J, Liu T, et al. Bi-VLGM: Bi-level class-severity-aware vision-language graph matching for text guided medical image segmentation. Int J Comput Vis, 2025, 133(3): 1375-1391.
|
| 30. |
Rao Y, Zhao W, Chen G, et al. Denseclip: Language-guided dense prediction with context-aware prompting// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2022: 18082-18091.
|
| 31. |
Yuan R, Chen M, Xu J, et al. Text-promptable propagation for referring medical image sequence segmentation. arXiv preprint arXiv, 2025: 2502.11093.
|
| 32. |
He J, Wang G, Zhang Q, et al. ReMamber: Referring image segmentation with mamba twister. arXiv preprint arXiv, 2024: 2404.11651.
|
| 33. |
Isensee F, Jaeger P F, Kohl S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods, 2021, 18(2): 203-211.
|
| 34. |
Hatamizadeh A, Nath V, Tang Y, et al. Swin UNETR: Swin transformers for semantic segmentation of brain tumors in MRI images// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Cham: Springer, 2022: 272-284.
|
| 35. |
Zhang Y, Liu H, Hu Q. TransFuse: Fusing transformers and CNNs for medical image segmentation// International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). Cham: Springer, 2021: 14-24.
|
| 36. |
Wang Z, Zheng J, Zhang Y, et al. Mamba-UNet: A mamba-based u-net for medical image segmentation. arXiv preprint arXiv, 2024: 2402.08699.
|
| 37. |
Ruan J, Li J, Xiang S. VM-UNet: Vision mamba u-net for medical image segmentation. arXiv preprint arXiv, 2024: 2402.02491.
|
| 38. |
Liu J, Yang H, Zhou H, et al. Swin-UMamba: Adapting mamba-based vision foundation models for medical image segmentation. arXiv preprint arXiv, 2024: 2402.03302.
|
| 39. |
Wu R, Liu Y, Liang L, et al. H-vmunet: High-order vision mamba u-net for medical image segmentation. arXiv preprint arXiv, 2024: 2403.13642.
|
| 40. |
Li Y, Li X, Liu Y, et al. MLLA-UNet: Mamba-like linear attention in an efficient u-shape model for medical image segmentation. arXiv preprint arXiv, 2024: 2405.02875.
|