| 1. |
Zhao Y, Schaafsma E, Cheng C. Gene signature-based prediction of triple-negative breast cancer patient response to Neoadjuvant chemotherap. Cancer Med, 2020, 9(17): 6281-6295.
|
| 2. |
Zhang M, Deng H, Hu R, et al. Patterns and prognostic implications of distant metastasis in breast cancer based on SEER population data. Science, 2025, 15(1): 26717.
|
| 3. |
Vyas M, Requesens M, Nguyen T H, et al. Natural killer cells suppress cancer metastasis by eliminating circulating cancer cells. Front Immunol, 2023, 13: 1098445.
|
| 4. |
Li Y, Liu F, Cai Q, et al. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther, 2025, 10(1): 57.
|
| 5. |
Mittelheisser V, Gensbittel V, Bonati L, et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat Nanotechnol, 2024, 19(3): 281-297.
|
| 6. |
Shen M, Kang Y. Stresses in the metastatic cascade: molecular mechanisms and therapeutic opportunities. Genes Dev, 2020, 34(23-24): 1577-1598.
|
| 7. |
Salminen A T, Allahyari Z, Gholizadeh S, et al. In vitro studies of transendothelial migration for biological and drug discovery. Front Med Technol, 2020, 2: 600616.
|
| 8. |
Agrawal A, Javanmardi Y, Watson SA, et al. Mechanical signatures in cancer metastasis. NPJ Biol Phys Mech, 2025, 2(1): 3.
|
| 9. |
Hu B, Xin Y, Hu G, et al. Fluid shear stress enhances natural killer cell’s cytotoxicity toward circulating tumor cells through NKG2D-mediated mechanosensing. APL Bioeng, 2023, 7(3): 036108.
|
| 10. |
Wu S, Tan Y, Li F, et al. CD44: a cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol, 2024, 15: 1354992.
|
| 11. |
Witschen P M, Chaffee T S, Brady N J, et al. Tumor cell associated hyaluronan-CD44 signaling promotes pro-tumor inflammation in breast cancer. Cancers (Basel), 2020, 12(5): 1325.
|
| 12. |
Amorim S, Reis C A, Reis R L, et al. Extracellular matrix mimics using hyaluronan-based biomaterials. Trends Biotechnol, 2021, 39(1): 90-104.
|
| 13. |
Zhang J, Huang S, Zhu Z, et al. E-selectin in vascular pathophysiology. Front Immunol, 2024, 15: 1401399.
|
| 14. |
Ogrodzinski L, Platt S, Goulding J, et al. Probing expression of E-selectin using CRISPR-Cas9-mediated tagging with HiBiT in human endothelial cells. iScience, 2023, 26(7): 107232.
|
| 15. |
Hassn Mesrati M, Syafruddin S E, Mohtar M A, et al. CD44: A multifunctional mediator of cancer progression. Biomolecules, 2021, 11(12): 1850.
|
| 16. |
Skandalis S S, Karalis T T, Chatzopoulos A, et al. Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal, 2019, 6: 109377.
|
| 17. |
Suzuki T, Suzuki M, Ogino S, et al. Mechanical force effect on the two-state equilibrium of the hyaluronanbinding domain of CD44 in cell rolling. Proc Natl Acad Sci USA, 2015, 112(22): 6991-6996.
|
| 18. |
Xu S, Wang T, Hu X, et al. A dual chemodrug-loaded hyaluronan nanogel for differentiation induction therapy of refractory AML via disrupting lysosomal homeostasis. Sci Adv, 2025, 11(13): eado3923.
|
| 19. |
McFarlane S, McFarlane C, Montgomery N, et al. CD44-mediated activation of alpha 5 beta 1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectin-enriched matrices. Oncotarget, 2015, 6(34): 36762-36773.
|
| 20. |
Grafinger O R, Gorshtein G, Stirling T, et al. β1 integrin-mediated signaling regulates MT1-MMP phosphorylation to promote tumor cell invasion. J Cell Sci, 2020, 133(9): jcs239152.
|
| 21. |
Niland S, Eble J A. Hold on or Cut? Integrin- and MMP-mediated cell–matrix interactions in the tumor microenvironment. Int J Mol Sci, 2020, 22(1): 238.
|
| 22. |
Iamshanova O, Fiorio Pla A, Prevarskaya N. Molecular mechanisms of tumour invasion: regulation by calcium signals. J Physiol, 2017, 595(10): 3063-3075.
|
| 23. |
Cui C, Zhang Y, Liu G, et al. Advances in the study of cancer metastasis and calcium signaling as potential therapeutic targets. Explor Target Antitumor Ther, 2021, 2(3): 266-291.
|
| 24. |
Silvestri R, Nicolì V, Gangadharannambiar P, et al. Calcium signalling pathways in prostate cancer initiation and progression. Nat Rev Urol, 2023, 20(9): 524-543.
|
| 25. |
Yago T, Shao B, Miner J J, et al. E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin αLβ2-mediated slow leukocyte rolling. Blood, 2010, 116(3): 485-494.
|
| 26. |
Ali A J, Abuelela A F, Merzaban J S. An analysis of trafficking receptors shows that CD44 and P-selectin glycoprotein ligand-1 collectively control the migration of activated human T-cells. Front Immunol, 2017, 8: 492.
|
| 27. |
李林達, 丁奇寒, 陳深寶, 等. CD44-配體相互作用的生物力學與功能調控. 力學學報, 2021, 53(2): 539-553.
|
| 28. |
Al Dybiat I, Mirshahi S, Belalou M, et al. Injured tissues favor cancer cell implantation via fibrin deposits on scar zones. Neoplasia, 2020, 22(12): 809-819.
|
| 29. |
Seo J, Do Yoo J, Kim M, et al. Fibrinolytic nanocages dissolve clots in the tumor microenvironment, improving the distribution and therapeutic efficacy of anticancer drugs. Exp Mol Med, 2021, 53(10): 1592-1601.
|
| 30. |
Bekos C, Grimm C, Brodowicz T, et al. Prognostic role of plasma fibrinogen in patients with uterine leiomyosarcoma–a multicenter study. Sci Rep, 2017, 7(1): 14474.
|
| 31. |
張穎, 方穎, 吳建華, 等. 流體剪切力下 CD44-HA 介導的 MDA-MB-231 細胞及 HL60 細胞的滾動黏附. 醫用生物力學, 2023, 38(2): 220-227.
|
| 32. |
Sun X, Huang B, Pan Y, et al. Spatiotemporal characteristics of P-selectin-induced β2 integrin activation of human neutrophils under flow. Front Immunol, 2022, 13: 1023865.
|
| 33. |
Yago T, Wu J, Wey C D, et al. Catch bonds govern adhesion through L-selectin at threshold shear. Cell Biol, 2004, 166(6): 913-923.
|
| 34. |
Li J, Springer T A. Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc Natl Acad Sci USA, 2017, 114(18): 4685-4690.
|
| 35. |
胡兵, 吳建華, 凌穎琛, 等. 流體剪切力下趨化因子 CXCL12 誘導 Jurkat T 細胞的鈣響應機制. 醫用生物力學, 2020, 35(3): 331-337.
|
| 36. |
Cui C, Merritt R, Fu L, et al. Targeting calcium signaling in cancer therapy. Acta Pharm Sin B, 2017, 7(1): 3-17.
|
| 37. |
Zarbock A, Abram C L, Hundt M, et al. PSGL-1 engagement by E-selectin signals through Src kinase Fgr and ITAM adapters DAP12 and FcRγ to induce slow leukocyte rolling. Exp Med, 2008, 205(10): 2339-2347.
|
| 38. |
張力, 吳建華, 方穎. 流體剪應力作用下E-選擇素介導的中性粒細胞鈣響應. 醫用生物力學, 2018, 33(2): 150-156.
|