| 1. |
揣征然, 張云輝, 趙雅琳, 等. 全球及中國 AIDS 最新疫情概況. 傳染病信息, 2020, 33(6): 501-503.
|
| 2. |
Bao Y, Larney S, Peacock A, et al. Prevalence of HIV, HCV and HBV infection and sociodemographic characteristics of people who inject drugs in China: a systematic review and meta-analysis. Int J Drug Policy, 2019, 70: 87-93.
|
| 3. |
Robb ML, Eller LA, Kibuuka H, et al. Prospective study of acute HIV-1 infection in adults in East Africa and Thailand. N Engl J Med, 2016, 374(22): 2120-2130.
|
| 4. |
Miller WC, Rosenberg NE, Rutstein SE, et al. Role of acute and early HIV infection in the sexual transmission of HIV. Curr Opin HIV AIDS, 2010, 5(4): 277-282.
|
| 5. |
Gray ER, Bain R, Varsaneux O, et al. p24 revisited: a landscape review of antigen detection for early HIV diagnosis. AIDS, 2018, 32(15): 2089-2102.
|
| 6. |
曾德軍, 張利沙, 馬建英, 等. HIV 早期感染實驗室檢測分析. 預防醫學情報雜志, 2020, 36(1): 99-102.
|
| 7. |
Gudmundsdotter L, Bernasconi D, Hejdeman B, et al. Cross-clade immune responses to Gag p24 in patients infected with different HIV-1 subtypes and correlation with HLA class Ⅰ and Ⅱ alleles. Vaccine, 2008, 26(40): 5182-5187.
|
| 8. |
Zhu S, Li D, An J, et al. Using Elecsys? HIV Combi PT assay to identify acute and early HIV infection in a teaching hospital of southwest China. Int J STD AIDS, 2016, 27(3): 213-218.
|
| 9. |
馬麗琴, 李康, 蓋敬云, 等. 1 例母嬰傳播 HIV 感染兒童的抗病毒治療與 HIV 抗體應答. 中國艾滋病性病, 2021, 27(5): 543-544.
|
| 10. |
邵一鳴. 艾滋病疫苗的科學挑戰和應對策略. 科學通報, 2017, 62(17): 1815-1822.
|
| 11. |
中國疾病預防控制中心. 中國艾滋病檢測技術規范(2020 年修訂版). (2020-05-18)[2021-08-02]. https://ncaids.chinacdc.cn/zxzx/zxdteff/202005/W020200522484711502629.pdf.
|
| 12. |
Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Materialia, 2000, 48(1): 1-29.
|
| 13. |
Dong HH, Liu JL, Zhu H, et al. Two types of nanoparticle-based bio-barcode amplification assays to detect HIV-1 p24 antigen. Virol J, 2012, 9: 180.
|
| 14. |
Kosaka PM, Pini V, Calleja M, et al. Ultrasensitive detection of HIV-1 p24 antigen by a hybrid nanomechanical-optoplasmonic platform with potential for detecting HIV-1 at first week after infection. PLoS One, 2017, 12(2): e0171899.
|
| 15. |
Haleyur Giri Setty MK, Kurdekar A, Mahtani P, et al. Cross-subtype detection of HIV-1 capsid p24 antigen using a sensitive europium nanoparticle assay. AIDS Res Hum Retroviruses, 2019, 35(4): 396-401.
|
| 16. |
Zhan L, Granade T, Liu Y, et al. Development and optimization of thermal contrast amplification lateral flow immunoassays for ultrasensitive HIV p24 protein detection. Microsyst Nanoeng, 2020, 6(1): 54.
|
| 17. |
Zhao WW, Han YM, Zhu YC, et al. DNA labeling generates a unique amplification probe for sensitive photoelectrochemical immunoassay of HIV-1 p24 antigen. Anal Chem, 2015, 87(11): 5496-5499.
|
| 18. |
Ma Y, Shen XL, Zeng Q, et al. A multi-walled carbon nanotubes based molecularly imprinted polymers electrochemical sensor for the sensitive determination of HIV-p24. Talanta, 2017, 164: 121-127.
|
| 19. |
Lin S, Hedde PN, Venugopalan V, et al. Multi-scale silica structures for improved HIV-1 Capsid (p24) antigen detection. Analyst, 2016, 141(13): 4181-4188.
|
| 20. |
Macchia E, Sarcina L, Picca RA, et al. Ultra-low HIV-1 p24 detection limits with a bioelectronic sensor. Anal Bioanal Chem, 2020, 412(4): 811-818.
|
| 21. |
Ruiz-Sanchez AJ, Parolo C, Miller BS, et al. Tuneable plasmonic gold dendrimer nanochains for sensitive disease detection. J Mater Chem B, 2017, 5(35): 7262-7266.
|
| 22. |
張利沙, 曾德軍. 鐵蛋白籠形納米顆粒應用于 HIV-1 P24 抗原高靈敏檢測的研究. 國際檢驗醫學雜志, 2019, 40(21): 2572-2575.
|
| 23. |
Li Z, Liu Y, Chen X, et al. Surface-modified mesoporous nanofibers for microfluidic immunosensor with an ultra-sensitivity and high signal-to-noise ratio. Biosens Bioelectron, 2020, 166: 112444.
|
| 24. |
Zhang Y, Yang H, Yu J, et al. Rapid and sensitive detection of HIV-1 p24 antigen by immunomagnetic separation coupled with catalytic fluorescent immunoassay. Anal Bioanal Chem, 2016, 408(22): 6115-6121.
|
| 25. |
Bystryak S, Acharya C. Detection of HIV-1 p24 antigen in patients with varying degrees of viremia using an ELISA with a photochemical signal amplification system. Clin Chim Acta, 2016, 456: 128-136.
|
| 26. |
Du MY, Li NX, Mao GB, et al. Self-assembled fluorescent Ce(Ⅲ) coordination polymer as ratiometric probe for HIV antigen detection. Anal Chim Acta, 2019, 1084: 116-122.
|
| 27. |
Miller BS, Bezinge L, Gliddon HD, et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature, 2020, 587(7835): 588-593.
|
| 28. |
Cao H, Liu Y, Sun H, et al. Increasing the assembly efficacy of peptidic β-sheets for a highly-sensitive HIV detection. Anal Chem, 2020, 92(16): 11089-11094.
|
| 29. |
祝蕾, 朱坤福. 納米材料在現代醫學影像上的應用研究. 信息記錄材料, 2021, 22(9): 30-31.
|
| 30. |
楊悅, 王玨玉, 趙敏, 等. 病毒模板合成的金屬納米材料及應用. 化學進展, 2019, 31(7): 1007-1019.
|
| 31. |
Chen PP, Bai YJ, Tang Y, et al. Rapid and highly sensitive visual detection of oxalate for metabolic assessment of urolithiasis via selective recognition reaction of CdTe quantum dots. J Mater Chem B, 2020, 8(34): 7677-7684.
|
| 32. |
李英姿, 何丹, 汪德州, 等. 熒光金納米簇/單壁碳納米管(AuNCs/SWNTs)復合材料制備及體外細胞毒性研究. 中國實驗診斷學, 2017, 21(12): 2180-2184.
|
| 33. |
李璟, 伍旭, 彭倩, 等. 基于裝載白藜蘆醇的脂質體包裹介孔碳納米管用于靶向及近紅外激光觸發的化療/光熱協同腫瘤治療. 激光生物學報, 2020, 29(6): 550-560.
|
| 34. |
Li FY, Zheng Y, Wu J, et al. Smartphone assisted immunodetection of HIV p24 antigen using reusable, centrifugal microchannel array chip. Talanta, 2019, 203: 83-89.
|
| 35. |
Sailapu SK, Macchia E, Merino-Jimenez I, et al. Standalone operation of an EGOFET for ultra-sensitive detection of HIV. Biosens Bioelectron, 2020, 156: 112103.
|