| 1. |
Persson CU, Kjellberg S, Lernfelt B, et al. Risk of falling in a stroke unit after acute stroke: The Fall Study of Gothenburg (FallsGOT). Clin Rehabil, 2018, 32(3): 398-409.
|
| 2. |
Park SJ, Cho KH, Kim SH. The effect of chest expansion exercise with TENS on gait ability and trunk control in chronic stroke patients. J Phys Ther Sci, 2018, 30(5): 697-699.
|
| 3. |
Van Criekinge T, Truijen S, Schr?der J, et al. The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis. Clin Rehabil, 2019, 33(6): 992-1002.
|
| 4. |
Kang N, Lee RD, Lee JH, et al. Functional balance and postural control improvements in patients with stroke after noninvasive brain stimulation: a meta-analysis. Arch Phys Med Rehabil, 2020, 101(1): 141-153.
|
| 5. |
Matthis JS, Yates JL, Hayhoe MM. Gaze and the control of foot placement when walking in natural terrain. Curr Biol, 2018, 28(8): 1224-1233.e5.
|
| 6. |
江漢宏, 葉賽青, 高強. 腦卒中后姿勢控制機制與訓練的研究進展. 中國康復醫學雜志, 2021, 36(8): 1020-1025.
|
| 7. |
Cruz TL, Pérez SM, Chiappe ME. Fast tuning of posture control by visual feedback underlies gaze stabilization in walking Drosophila. Curr Biol, 2021, 31(20): 4596-4607.e5.
|
| 8. |
尹群輝, 張皓. 腦卒中偏癱患者預期性姿勢調節的研究進展. 中國康復理論與實踐, 2017, 23(11): 1250-1253.
|
| 9. |
Cavallari P, Bolzoni F, Bruttini C, et al. The organization and control of intra-limb anticipatory postural adjustments and their role in movement performance. Front Hum Neurosci, 2016, 10: 525.
|
| 10. |
陳意, 謝運娟, 高強. 預期性姿勢調節的神經調控網絡研究進展. 中國康復理論與實踐, 2020, 26(5): 568-571.
|
| 11. |
Piscitelli D, Falaki A, Solnik S, et al. Anticipatory postural adjustments and anticipatory synergy adjustments: preparing to a postural perturbation with predictable and unpredictable direction. Exp Brain Res, 2017, 235(3): 713-730.
|
| 12. |
Chiou SY, Hurry M, Reed T, et al. Cortical contributions to anticipatory postural adjustments in the trunk. J Physiol, 2018, 596(7): 1295-1306.
|
| 13. |
Bastian AJ. Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol, 2006, 16(6): 645-649.
|
| 14. |
Deane JA, Lim AKP, Phillips ATM, et al. Symptomatic individuals with Lumbar Disc Degeneration use different anticipatory and compensatory kinematic strategies to asymptomatic controls in response to postural perturbation. Gait Posture, 2022, 94: 222-229.
|
| 15. |
Cheung TCK, Schmuckler MA. Multisensory postural control in adults: variation in visual, haptic, and proprioceptive inputs. Hum Mov Sci, 2021, 79: 102845.
|
| 16. |
Dideriksen J, Negro F. Feedforward modulation of gamma motor neuron activity can improve motor command accuracy. J Neural Eng, 2021, 18(4): 046068.
|
| 17. |
Bax AM, Johnson KJ, Watson AM, et al. The effects of perturbation type and direction on threat-related changes in anticipatory postural control. Hum Mov Sci, 2020, 73: 102674.
|
| 18. |
Blumenfeld H. Neuroanatomy through clinical cases. Sunderland:Sinauer Associates, 2010: 698-734.
|
| 19. |
Lam CK, Tokuno CD, Staines WR, et al. The direction of the postural response to a vestibular perturbation is mediated by the cerebellar vermis. Exp Brain Res, 2016, 234(12): 3689-3697.
|
| 20. |
Stoodley CJ, Schmahmann JD. Functional topography of the human cerebellum. Handb Clin Neurol, 2018, 154: 59-70.
|
| 21. |
Santos MJ, Kanekar N, Aruin AS. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J Electromyogr Kinesiol, 2010, 20(3): 388-397.
|
| 22. |
Takahata K, Kato M. Neural mechanism underlying autistic savant and acquired savant syndrome. Brain Nerve, 2008, 60(7): 861-869.
|
| 23. |
Fujimoto H, Mihara M, Hattori N, et al. Cortical changes underlying balance recovery in patients with hemiplegic stroke. Neuroimage, 2014, 85(1): 547-554.
|
| 24. |
Mihara M, Miyai I, Hattori N, et al. Cortical control of postural balance in patients with hemiplegic stroke. Neuroreport, 2012, 23(5): 314-319.
|
| 25. |
Kaulmann D, Hermsd?rfer J, Johannsen L. Disruption of right posterior parietal cortex by continuous theta burst stimulation alters the control of body balance in quiet stance. Eur J Neurosci, 2017, 45(5): 671-678.
|
| 26. |
Mierau A, Pester B, Hülsdünker T, et al. Cortical correlates of human balance control. Brain Topogr, 2017, 30(4): 434-446.
|
| 27. |
高強, 江漢宏, 魏清川, 等. 中樞傳導通路與姿勢控制技術研究進展與應用推廣. 中國科技成果, 2021, 22(10): 58-59.
|
| 28. |
Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice. Philadelphia: Lippincott Williams & Wilkins, 2017: 22-43.
|
| 29. |
Karthikbabu S, Verheyden G. Relationship between trunk control, core muscle strength and balance confidence in community-dwelling patients with chronic stroke. Top Stroke Rehabil, 2021, 28(2): 88-95.
|
| 30. |
Jijimol G, Fayaz RK, Vijesh PV. Correlation of trunk impairment with balance in patients with chronic stroke. NeuroRehabilitation, 2013, 32(2): 323-325.
|
| 31. |
Sorrentino G, Sale P, Solaro C, et al. Clinical measurement tools to assess trunk performance after stroke: a systematic review. Eur J Phys Rehabil Med, 2018, 54(5): 772-784.
|
| 32. |
Verheyden G, Kersten P. Investigating the internal validity of the Trunk Impairment Scale (TIS) using Rasch analysis: the TIS 2.0. Disabil Rehabil, 2010, 32(25): 2127-2137.
|
| 33. |
Hernández ED, Galeano CP, Barbosa NE, et al. Intra- and inter-rater reliability of Fugl-Meyer assessment of upper extremity in stroke. J Rehabil Med, 2019, 51(9): 652-659.
|
| 34. |
Rech KD, Salazar AP, Marchese RR, et al. Fugl-Meyer assessment scores are related with kinematic measures in people with chronic hemiparesis after stroke. J Stroke Cerebrovasc Dis, 2020, 29(1): 104463.
|
| 35. |
Tsang RC, Chau RM, Cheuk TH, et al. The measurement properties of modified Rivermead mobility index and modified functional ambulation classification as outcome measures for Chinese stroke patients. Physiother Theory Pract, 2014, 30(5): 353-359.
|
| 36. |
Lascano AM, Lalive PH, Hardmeier M, et al. Clinical evoked potentials in neurology: a review of techniques and indications. J Neurol Neurosurg Psychiatry, 2017, 88(8): 688-696.
|
| 37. |
Niso G, Tjepkema-Cloostermans MC, Lenders MWPM, et al. Modulation of the somatosensory evoked potential by attention and spinal cord stimulation. Front Neurol, 2021, 12: 694310.
|
| 38. |
Lee SY, Lim JY, Kang EK, et al. Prediction of good functional recovery after stroke based on combined motor and somatosensory evoked potential findings. J Rehabil Med, 2010, 42(1): 16-20.
|
| 39. |
張偉東, 寇麗, 王幸麗, 等. 腦干聽覺誘發電位、腦電圖、MRI 及 MSCT 在診斷重癥病毒性腦炎患兒中的應用. 中國 CT 和 MRI 雜志, 2020, 18(5): 75-78.
|
| 40. |
曹成龍, 宋健, 杜浩, 等. 基于事件相關電位技術的情緒能力障礙研究進展. 中國臨床神經外科雜志, 2017, 22(4): 276-278.
|
| 41. |
Paulus W, Classen J, Cohen LG, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul, 2008, 1(3): 151-163.
|
| 42. |
Li JY, Chen R. Increased intracortical inhibition in hyperglycemic hemichorea-hemiballism. Mov Disord, 2015, 30(2): 198-205.
|
| 43. |
Keser Z, Buchl SC, Seven NA, et al. Electroencephalogram (EEG) with or without transcranial magnetic stimulation (TMS) as biomarkers for post-stroke recovery: a narrative review. Front Neurol, 2022, 13: 827866.
|
| 44. |
Quaresima V, Ferrari M. Functional near-infrared spectroscopy (fNIRS) for assessing cerebral cortex function during human behavior in natural/social situations: a concise review. Organ Res Met, 2016, 1: 46-68.
|
| 45. |
Khan H, Naseer N, Yazidi A, et al. Analysis of human gait using hybrid EEG-fNIRS-based BCI system: a review. Front Hum Neurosci, 2021, 14: 613254.
|
| 46. |
Amyot F, Kenney K, Spessert E, et al. Assessment of cerebrovascular dysfunction after traumatic brain injury with fMRI and fNIRS. Neuroimage Clin, 2020, 25: 102086.
|
| 47. |
吳毅. 腦卒中患者的腦功能檢測及腦刺激新技術. 中華物理醫學與康復雜志, 2019, 41(2): 81-83.
|
| 48. |
Du J, Yang F, Zhang Z, et al. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study. Brain Imaging Behav, 2018, 12(6): 1804-1813.
|
| 49. |
Tae WS, Ham BJ, Pyun SB, et al. Current clinical applications of diffusion-tensor imaging in neurological disorders. J Clin Neurol, 2018, 14(2): 129-140.
|
| 50. |
高鑫潔, 唐朝正, 徐國軍, 等. 基于彌散張量纖維束成像探討皮質脊髓束損傷對腦卒中運動功能障礙的評估價值. 中國康復理論與實踐, 2018, 24(12): 1432-1437.
|
| 51. |
謝運娟, 廖伶藝, 高強. 彌散張量成像在腦卒中患者運動功能預后評估中的研究進展. 中國康復理論與實踐, 2019, 25(5): 546-549.
|
| 52. |
Kim EH, Lee J, Jang SH. Motor outcome prediction using diffusion tensor tractography of the corticospinal tract in large middle cerebral artery territory infarct. NeuroRehabilitation, 2013, 32(3): 583-590.
|
| 53. |
Gamble K, Chiu A, Peiris C. Core stability exercises in addition to usual care physiotherapy improve stability and balance after stroke: a systematic review and meta-analysis. Arch Phys Med Rehabil, 2021, 102(4): 762-775.
|
| 54. |
Haruyama K, Kawakami M, Otsuka T. Effect of core stability training on trunk function, standing balance, and mobility in stroke patients. Neurorehabil Neural Repair, 2017, 31(3): 240-249.
|
| 55. |
Zaback M, Adkin AL, Chua R, et al. Facilitation and habituation of cortical and subcortical control of standing balance following repeated exposure to a height-related postural threat. Neuroscience, 2022, 487: 8-25.
|
| 56. |
Dijkstra BW, Bekkers EMJ, Gilat M, et al. Functional neuroimaging of human postural control: a systematic review with meta-analysis. Neurosci Biobehav Rev, 2020, 115: 351-362.
|
| 57. |
Lee NG, You JSH, Yi CH, et al. Best core stabilization for anticipatory postural adjustment and falls in hemiparetic stroke. Arch Phys Med Rehabil, 2018, 99(11): 2168-2174.
|
| 58. |
Yoon HS, Cha YJ, You JSH. Effects of dynamic core-postural chain stabilization on diaphragm movement, abdominal muscle thickness, and postural control in patients with subacute stroke: a randomized control trial. NeuroRehabilitation, 2020, 46(3): 381-389.
|
| 59. |
Arntzen EC, Straume BK, Odeh F, et al. Group-based individualized comprehensive core stability intervention improves balance in persons with multiple sclerosis: a randomized controlled trial. Phys Ther, 2019, 99(8): 1027-1038.
|
| 60. |
Aloraini SM, Glazebrook CM, Pooyania S, et al. An external focus of attention compared to an internal focus of attention improves anticipatory postural adjustments among people post-stroke. Gait Posture, 2020, 82: 100-105.
|
| 61. |
Kim K, Jung SI, Lee DK. Effects of task-oriented circuit training on balance and gait ability in subacute stroke patients: a randomized controlled trial. J Phys Ther Sci, 2017, 29(6): 989-992.
|
| 62. |
Chieffo R, Comi G, Leocani L. Noninvasive neuromodulation in poststroke gait disorders: rationale, feasibility, and state of the art. Neurorehabil Neural Repair, 2016, 30(1): 71-82.
|
| 63. |
Fan H, Song Y, Cen X, et al. The effect of repetitive transcranial magnetic stimulation on lower-limb motor ability in stroke patients: a systematic review. Front Hum Neurosci, 2021, 15: 620573.
|
| 64. |
Xie YJ, Chen Y, Tan HX, et al. Repetitive transcranial magnetic stimulation for lower extremity motor function in patients with stroke: a systematic review and network meta-analysis. Neural Regen Res, 2021, 16(6): 1168-1176.
|
| 65. |
Koch G, Bonnì S, Casula EP, et al. Effect of cerebellar stimulation on gait and balance recovery in patients with hemiparetic stroke: a randomized clinical trial. JAMA Neurol, 2019, 76(2): 170-178.
|
| 66. |
Liao LY, Xie YJ, Chen Y, et al. Cerebellar theta-burst stimulation combined with physiotherapy in subacute and chronic stroke patients: a pilot randomized controlled trial. Neurorehabil Neural Repair, 2021, 35(1): 23-32.
|
| 67. |
Chen Y, Wei QC, Zhang MZ, et al. Cerebellar intermittent theta-burst stimulation reduces upper limb spasticity after subacute stroke: a randomized controlled trial. Front Neural Circuits, 2021, 15: 655502.
|
| 68. |
Xie YJ, Wei QC, Chen Y, et al. Cerebellar theta burst stimulation on walking function in stroke patients: a randomized clinical trial. Front Neurosci, 2021, 15: 688569.
|
| 69. |
Dong K, Meng S, Guo Z, et al. The effects of transcranial direct current stimulation on balance and gait in stroke patients: a systematic review and meta-analysis. Front Neurol, 2021, 12: 650925.
|
| 70. |
Seo HG, Lee WH, Lee SH, et al. Robotic-assisted gait training combined with transcranial direct current stimulation in chronic stroke patients: a pilot double-blind, randomized controlled trial. Restor Neurol Neurosci, 2017, 35(5): 527-536.
|
| 71. |
Figlewski K, Blicher JU, Mortensen J, et al. Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke, 2017, 48(1): 229-232.
|
| 72. |
Massetti T, Crocetta TB, Silva TDD, et al. Application and outcomes of therapy combining transcranial direct current stimulation and virtual reality: a systematic review. Disabil Rehabil Assist Technol, 2017, 12(6): 551-559.
|
| 73. |
Yao X, Cui L, Wang J, et al. Effects of transcranial direct current stimulation with virtual reality on upper limb function in patients with ischemic stroke: a randomized controlled trial. J Neuroeng Rehabil, 2020, 17(1): 73.
|
| 74. |
Kumru H, Flores A, Rodríguez-Ca?ón M, et al. Non-invasive brain and spinal cord stimulation for motor and functional recovery after a spinal cord injury. Rev Neurol, 2020, 70(12): 461-477.
|
| 75. |
Fujimoto H, Mihara M, Hattori N, et al. Neurofeedback-induced facilitation of the supplementary motor area affects postural stability. Neurophotonics, 2017, 4(4): 045003.
|
| 76. |
Xie Q, Cheng J, Pan G, et al. Treadmill exercise ameliorates focal cerebral ischemia/reperfusion-induced neurological deficit by promoting dendritic modification and synaptic plasticity via upregulating caveolin-1/VEGF signaling pathways. Exp Neurol, 2019, 313: 60-78.
|
| 77. |
Tavazzi E, Bergsland N, Pirastru A, et al. MRI markers of functional connectivity and tissue microstructure in stroke-related motor rehabilitation: a systematic review. Neuroimage Clin, 2022, 33: 102931.
|
| 78. |
馬富斌. 一附院舉辦腦卒中神經傳導通路與姿勢控制康復治療技術培訓班. (2018-08-23)[2022-04-11]. https://www.gxtcmu.edu.cn/Item/23043.aspx.
|
| 79. |
江漢宏. 華西康復 CPPC 技術培訓班在廣州成功舉辦. (2019-06-13)[2022-04-11]. http://www.wchscu.cn/public/department/nephrology/dynamics/31493.html.
|
| 80. |
四川省醫學會. 四川省醫學會關于公布 2021 年度四川省醫學(青年)科技獎獲獎項目的通知. (2022-02-09)[2022-04-11]. http://www.sma.org.cn/main/dispnews.asp?no=252BCBDA-25C3-40D6-9B1F-2E6D8EB8F31D.
|