| 1. |
王布雷. 白及多糖水凝膠促皮膚傷口愈合作用研究. 西安: 陜西師范大學, 2021.
|
| 2. |
Qu J, Zhao X, Liang Y, et al. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials, 2018, 183: 185-199.
|
| 3. |
Iqubal MK, Iqubal A, Anjum H, et al. Determination of in vivo virtue of dermal targeted combinatorial lipid nanocolloidal based formulation of 5-fluorouracil and resveratrol against skin cancer. Int J Pharm, 2021, 610: 121179.
|
| 4. |
Wang M, Huang X, Zheng H, et al. Nanomaterials applied in wound healing: mechanisms, limitations and perspectives. J Control Release, 2021, 337: 236-247.
|
| 5. |
Hirsch T, Spielmann M, Zuhaili B, et al. Enhanced susceptibility to infections in a diabetic wound healing model. BMC Surg, 2008, 8: 5.
|
| 6. |
Parani M, Lokhande G, Singh A, et al. Engineered nanomaterials for infection control and healing acute and chronic wounds. ACS Appl Mater Interfaces, 2016, 8(16): 10049-10069.
|
| 7. |
Zhao X, Wu H, Guo B, et al. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122: 34-47.
|
| 8. |
Gil J, Natesan S, Li J, Valdes J, et al. A PEGylated fibrin hydrogel-based antimicrobial wound dressing controls infection without impeding wound healing. Int Wound J, 2017, 14(6): 1248-1257.
|
| 9. |
Zhong SP, Zhang YZ, Lim CT. Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2010, 2(5): 510-525.
|
| 10. |
馬蕊. 負載 P 物質和脂肪干細胞的甲基丙烯酰化明膠-絲素蛋白水凝膠促進皮膚創口愈合的研究. 長春: 吉林大學, 2023.
|
| 11. |
趙雅玫, 余小平, 張苗苗, 等. 維生素 D3 促進皮膚損傷修復的研究進展. 感染、炎癥、修復, 2022, 23(3): 180-183.
|
| 12. |
Li Z, Zhou F, Li Z, et al. Hydrogel cross-linked with dynamic covalent bonding and micellization for promoting burn wound healing. ACS Appl Mater Interfaces, 2018, 10(30): 25194-25202.
|
| 13. |
Yu W, Jiang G, Zhang Y, et al. Polymer microneedles fabricated from alginate and hyaluronate for transdermal delivery of insulin. Mater Sci Eng C Mater Biol Appl, 2017, 80: 187-196.
|
| 14. |
柳春玉, 王雪, 舒丹, 等. 硼酸/硼硅酸鹽生物活性玻璃促創面愈合進展. 硅酸鹽學報, 2024, 52(2): 681-693.
|
| 15. |
馮偉娜. 磺化透明質酸基水凝膠的構建及其在調控創面炎癥微環境促進愈合中的研究. 北京: 北京化工大學, 2023.
|
| 16. |
Gao D, Zhang Y, Bowers DT, et al. Functional hydrogels for diabetic wound management. APL Bioeng, 2021, 5(3): 031503.
|
| 17. |
Wang Y, Beekman J, Hew J, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring. Adv Drug Deliv Rev, 2018, 123: 3-17.
|
| 18. |
王萍, 范莉, 田梅. 放射性皮膚損傷機制的研究進展. 中國輻射衛生, 2022, 31(4): 524-529.
|
| 19. |
王一如, 白姣姣. 微環境 pH 值對慢性創面愈合影響的研究進展. 護理學雜志, 2023, 38(19): 121-124.
|
| 20. |
董毓敏, 袁亞翠, 鄭婉君, 等. 慢性傷口患者負性情緒與生活質量的相關性及其影響因素分析. 臨床醫學研究與實踐, 2023, 8(19): 48-51.
|
| 21. |
Fu X. State policy for managing chronic skin wounds in China. Wound Repair Regen, 2020, 28(4): 576-577.
|
| 22. |
Sen CK. Human wounds and its burden: an updated compendium of estimates. Adv Wound Care (New Rochelle), 2019, 8(2): 39-48.
|
| 23. |
Yang Z, Huang R, Zheng B, et al. Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci (Weinh), 2021, 8(8): 2003627.
|
| 24. |
Hu H, Xu FJ. Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomater Sci, 2020, 8(8): 2084-2101.
|
| 25. |
周美玲, 杜姍, 歐康康, 等. 納米纖維基智能創傷敷料的研究進展. 材料導報, 2024, 38(20): 272-282.
|
| 26. |
Mei L, Zhu S, Yin W, et al. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10(2): 757-781.
|
| 27. |
閻錫蘊. 納米材料新特性及生物醫學應用. 北京: 科學出版社, 2014: 327.
|
| 28. |
Kumar SSD, Rajendran NK, Houreld NN, et al. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int J Biol Macromol, 2018, 115: 165-175.
|
| 29. |
王鴻彬, 程杰. VSD 聯合納米銀醫用抗菌敷料對糖尿病足慢性難愈創面療效和炎性因子的影響. 中華養生保健, 2023, 41(18): 1-4.
|
| 30. |
郭春蘭, 席祖洋, 鄧紅艷, 等. 納米銀敷料用于體表慢性難愈合傷口的效果及安全性評價. 廣東醫學, 2016, 37(22): 3477-3480.
|
| 31. |
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol, 2018, 98: 257-267.
|
| 32. |
Li J, Cha R, Mou K, et al. Nanocellulose-based antibacterial materials. Adv Healthc Mater, 2018, 7(20): e1800334.
|
| 33. |
Darbasizadeh B, Fatahi Y, Feyzi-Barnaji B, et al. Crosslinked-polyvinyl alcohol-carboxymethyl cellulose/ZnO nanocomposite fibrous mats containing erythromycin (PVA-CMC/ZnO-EM): fabrication, characterization and in-vitro release and anti-bacterial properties. Int J Biol Macromol, 2019, 141: 1137-1146.
|
| 34. |
Kert M, Jazbec K, ?erne L, et al. The influence of nano-ZnO application methods on UV protective properties of cotton. Acta Chim Slov, 2014, 61(3): 587-594.
|
| 35. |
Yu LP, Fang T, Xiong DW, et al. Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, ˙OH production and particle dissolution in distilled water. J Environ Monit, 2011, 13(7): 1975-1982.
|
| 36. |
周禮勝. 一種具有抗菌和免疫調節功能水凝膠用于感染創面治療的研究. 廣州: 暨南大學, 2024.
|
| 37. |
吳凡. 負載利拉魯肽和氧化鋅的電紡膜用作細菌感染創面敷料. 上海: 東華大學, 2023.
|
| 38. |
Nel A, Xia T, M?dler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622-627.
|
| 39. |
Deng X, Luan Q, Chen W, et al. Nanosized zinc oxide particles induce neural stem cell apoptosis. Nanotechnology, 2009, 20(11): 115101.
|
| 40. |
Yang H, Liu C, Yang D, et al. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol, 2009, 29(1): 69-78.
|
| 41. |
Franklin NM, Rogers NJ, Apte SC, et al. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol, 2007, 41(24): 8484-8490.
|
| 42. |
Khan AUR, Huang K, Khalaji MS, et al. Multifunctional bioactive core-shell electrospun membrane capable to terminate inflammatory cycle and promote angiogenesis in diabetic wound. Bioact Mater, 2021, 6(9): 2783-2800.
|
| 43. |
Khan AUR, Huang K, Jinzhong Z, et al. Exploration of the antibacterial and wound healing potential of a PLGA/silk fibroin based electrospun membrane loaded with zinc oxide nanoparticles. J Mater Chem B, 2021, 9(5): 1452-1465.
|
| 44. |
王偉. 負載氧化鋅的 OSA-ZnO 復合納米纖維的制備及用于大鼠皮膚創面愈合的研究. 上海: 東華大學, 2022.
|
| 45. |
孫慧譞. 基于 ZnO NPs@GO 抗菌水凝膠傷口敷料的制備、評價與應用. 武漢: 武漢理工大學, 2022.
|
| 46. |
Li W, Zhang G, Wei X. Lidocaine-loaded reduced graphene oxide hydrogel for prolongation of effects of local anesthesia: in vitro and in vivo analyses. J Biomater Appl, 2021, 35(8): 1034-1042.
|
| 47. |
Li H, Jia Y, Liu C. RETRACTED: pluronic? F127 stabilized reduced graphene oxide hydrogel for transdermal delivery of ondansetron: ex vivo and animal studies. Colloids Surf B Biointerfaces, 2020, 195: 111259.
|
| 48. |
Paul A, Hasan A, Kindi HA, et al. Injectable graphene oxide/hydrogel-based angiogenic gene delivery system for vasculogenesis and cardiac repair. ACS Nano, 2014, 8(8): 8050-8062.
|
| 49. |
Jing X, Mi HY, Napiwocki BN, et al. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon, 2017, 125: 557-570.
|
| 50. |
Reina G, González-Domínguez JM, Criado A, et al. Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev, 2017, 46(15): 4400-4416.
|
| 51. |
Jin L, Guo X, Gao D, et al. NIR-responsive MXene nanobelts for wound healing. NPG Asia Mater, 2021, 13(24): 1-9.
|