| 1. |
Cheng LK, O’Grady G, Du P, et al. Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med, 2010, 2(1): 65-79.
|
| 2. |
Fallingborg J. Intraluminal pH of the human gastrointestinal tract. Dan Med Bull, 1999, 46(3): 183-196.
|
| 3. |
Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract - influence of physiological, pathophysiological and pharmaceutical factors. Front Pharmacol, 2020, 11: 524.
|
| 4. |
Rashid MU, Alomari M, Afraz S, et al. EMR and ESD: indications, techniques and results. Surg Oncol, 2022, 43: 101742.
|
| 5. |
Ni P, Li R, Ye S, et al. Lactobionic acid-modified chitosan thermosensitive hydrogels that lift lesions and promote repair in endoscopic submucosal dissection. Carbohydr Polym, 2021, 263: 118001.
|
| 6. |
Ni P, Ye S, Li R, et al. Chitosan thermosensitive hydrogels based on lyophilizate powders demonstrate significant potential for clinical use in endoscopic submucosal dissection procedures. Int J Biol Macromol, 2021, 184: 593-603.
|
| 7. |
Amiri N, Ajami S, Shahroodi A, et al. Teicoplanin-loaded chitosan-PEO nanofibers for local antibiotic delivery and wound healing. Int J Biol Macromol, 2020, 162: 645-656.
|
| 8. |
Zhang K, Xue K, Loh XJ. Thermo-responsive hydrogels: from recent progress to biomedical applications. Gels, 2021, 7(3): 77.
|
| 9. |
Hu X, Grinstaff MW. Advances in hydrogel adhesives for gastrointestinal wound closure and repair. Gels, 2023, 9(4): 282.
|
| 10. |
Rahmanian-Devin P, Baradaran Rahimi V, Askari VR. Thermosensitive chitosan-β-glycerophosphate hydrogels as targeted drug delivery systems: an overview on preparation and their applications. Adv Pharmacol Pharm Sci, 2021, 2021: 6649174.
|
| 11. |
Ansari MJ, Rajendran RR, Mohanto S, et al. Poly(N-isopropylacrylamide)-based hydrogels for biomedical applications: a review of the state-of-the-art. Gels, 2022, 8(7): 454.
|
| 12. |
Liu YY, Shao YH, Lü J. Preparation, properties and controlled release behaviors of pH-induced thermosensitive amphiphilic gels. Biomaterials, 2006, 27(21): 4016-4024.
|
| 13. |
Li S, Yang C, Li J, et al. Progress in pluronic F127 derivatives for application in wound healing and repair. Int J Nanomedicine, 2023, 18: 4485-4505.
|
| 14. |
Revdekar A, Shende P. Block copolymers in Alzheimer’s disease therapy: a perceptive to revolutionize biomaterials. J Control Release, 2021, 340: 271-281.
|
| 15. |
Sohail M, Mudassir, Minhas MU, et al. Natural and synthetic polymer-based smart biomaterials for management of ulcerative colitis: a review of recent developments and future prospects. Drug Deliv Transl Res, 2019, 9(2): 595-614.
|
| 16. |
Klouda L. Thermoresponsive hydrogels in biomedical applications: a seven-year update. Eur J Pharm Biopharm, 2015, 97(Pt B): 338-349.
|
| 17. |
Lei XX, Hu JJ, Zou CY, et al. Multifunctional two-component in-situ hydrogel for esophageal submucosal dissection for mucosa uplift, postoperative wound closure and rapid healing. Bioact Mater, 2023, 27: 461-473.
|
| 18. |
Li X, Zhao D, Shea KJ, et al. In situ formed thermogelable hydrogel photonic crystals assembled by thermosensitive IPNs. Mater Horiz, 2021, 8(3): 932-938.
|
| 19. |
Heine S, Aguilar-Pimentel A, Russkamp D, et al. Thermosensitive PLGA-PEG-PLGA hydrogel as depot matrix for allergen-specific immunotherapy. Pharmaceutics, 2022, 14(8): 1527.
|
| 20. |
Ruel-Gariépy E, Chenite A, Chaput C, et al. Characterization of thermosensitive chitosan gels for the sustained delivery of drugs. Int J Pharm, 2000, 203(1/2): 89-98.
|
| 21. |
Weng L, Chen X, Chen W. Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules, 2007, 8(4): 1109-1115.
|
| 22. |
Kumano I, Ishihara M, Nakamura S, et al. Endoscopic submucosal dissection for pig esophagus by using photocrosslinkable chitosan hydrogel as submucosal fluid cushion. Gastrointest Endosc, 2012, 75(4): 841-848.
|
| 23. |
Eeckman F, Mo?s AJ, Amighi K. Poly(N-isopropylacrylamide) copolymers for constant temperature controlled drug delivery. Int J Pharm, 2004, 273(1/2): 109-119.
|
| 24. |
Fernández-Gutiérrez M, Fusco S, Mayol L, et al. Stimuli-responsive chitosan/poly (N-isopropylacrylamide) semi-interpenetrating polymer networks: effect of pH and temperature on their rheological and swelling properties. J Mater Sci Mater Med, 2016, 27(6): 109.
|
| 25. |
Zhang Z, Ni J, Chen L, et al. Biodegradable and thermoreversible PCLA-PEG-PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials, 2011, 32(21): 4725-4736.
|
| 26. |
Ma H, He C, Cheng Y, et al. PLK1shRNA and doxorubicin co-loaded thermosensitive PLGA-PEG-PLGA hydrogels for osteosarcoma treatment. Biomaterials, 2014, 35(30): 8723-8734.
|
| 27. |
Gao B, Luo J, Liu Y, et al. Intratumoral administration of thermosensitive hydrogel co-loaded with norcantharidin nanoparticles and doxorubicin for the treatment of hepatocellular carcinoma. Int J Nanomedicine, 2021, 16: 4073-4085.
|
| 28. |
Mu?oz Taboada G, Dahis D, Dosta P, et al. Sprayable hydrogel sealant for gastrointestinal wound shielding. Adv Mater, 2024, 36(24): e2311798.
|
| 29. |
Zhu Y, Xu JX, Cheng J, et al. A novel injectable thermo-sensitive binary hydrogels system for facilitating endoscopic submucosal dissection procedure. United European Gastroenterol J, 2019, 7(6): 782-789.
|
| 30. |
Bhalani DV, Nutan B, Kumar A, et al. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 2022, 10(9): 2055.
|
| 31. |
Large DE, Abdelmessih RG, Fink EA, et al. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv Drug Deliv Rev, 2021, 176: 113851.
|
| 32. |
Ili?-Stojanovi? S, Nikoli? L, Nikoli? V, et al. Temperature-sensitive hydrogels as carriers for modulated delivery of acetaminophen. Gels, 2023, 9(9): 684.
|
| 33. |
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev, 2021, 179: 114021.
|
| 34. |
Prasher P, Sharma M, Singh SK, et al. Targeting mucus barrier in respiratory diseases by chemically modified advanced delivery systems. Chem Biol Interact, 2022, 365: 110048.
|
| 35. |
Sun Z, Song C, Wang C, et al. Hydrogel-based controlled drug delivery for cancer treatment: a review. Mol Pharm, 2020, 17(2): 373-391.
|
| 36. |
Liu J, Sun J, Hu J, et al. Biomaterial-based drug delivery strategies for oral mucosa. Colloids Surf B Biointerfaces, 2025, 251: 114604.
|
| 37. |
He S, Liu Z, Xu D. Advance in oral delivery systems for therapeutic protein. J Drug Target, 2019, 27(3): 283-291.
|
| 38. |
Liu GW, Pickett MJ, Kuosmanen JLP, et al. Drinkable in situ-forming tough hydrogels for gastrointestinal therapeutics. Nat Mater, 2024, 23(9): 1292-1299.
|
| 39. |
Xiao Y, Gu Y, Qin L, et al. Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces, 2021, 200: 111581.
|
| 40. |
Wang Q, Qu Y, Zhang Z, et al. Injectable DNA hydrogel-based local drug delivery and immunotherapy. Gels, 2022, 8(7): 400.
|
| 41. |
Liu B, Chen K. Advances in hydrogel-based drug delivery systems. Gels, 2024, 10(4): 262.
|
| 42. |
Alqahtani MS, Kazi M, Alsenaidy MA, et al. Advances in oral drug delivery. Front Pharmacol, 2021, 12: 618411.
|
| 43. |
Scully C, Porter S. Oral mucosal disease: recurrent aphthous stomatitis. Br J Oral Maxillofac Surg, 2008, 46(3): 198-206.
|
| 44. |
Desai DD, Manikkath J, Lad H, et al. Nanotechnology-based mucoadhesive and mucus-penetrating drug-delivery systems for transbuccal drug delivery. Nanomedicine (Lond), 2023, 18(21): 1495-1514.
|
| 45. |
Luo Y, Tan J, Zhou Y, et al. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: a review. Int J Biol Macromol, 2023, 231: 123308.
|
| 46. |
Xu X, Xia X, Zhang K, et al. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Sci Transl Med, 2020, 12(558): eaba8014.
|
| 47. |
Xiao Q, Li X, Li Y, et al. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm Sin B, 2021, 11(4): 941-960.
|
| 48. |
Centurión F, Basit AW, Liu J, et al. Nanoencapsulation for probiotic delivery. ACS Nano, 2021, 15(12): 18653-18660.
|
| 49. |
Zhong D, Jin K, Wang R, et al. Microalgae-based hydrogel for inflammatory bowel disease and its associated anxiety and depression. Adv Mater, 2024, 36(24): e2312275.
|
| 50. |
Yang Z, Zhou X, Wang L, et al. Mn3O4 nanozyme loaded thermosensitive PDLLA-PEG-PDLLA hydrogels for the treatment of inflammatory bowel disease. ACS Appl Mater Interfaces, 2023, 15(28): 33273-33287.
|
| 51. |
Khaledi S, Jafari S, Hamidi S, et al. Preparation and characterization of PLGA-PEG-PLGA polymeric nanoparticles for co-delivery of 5-fluorouracil and Chrysin. J Biomater Sci Polym Ed, 2020, 31(9): 1107-1126.
|
| 52. |
Khan I, Panda S, Kumar S, et al. A composite hydrogel of porous gold nanorods and gelatin: nanoscale structure and rheomechanical properties. J Chem Phys, 2025, 162(1): 014904.
|
| 53. |
Ma N, Yan Z. Research progress of thermosensitive hydrogel in tumor therapeutic. Nanoscale Res Lett, 2021, 16(1): 42.
|
| 54. |
Pimentel-Nunes P, Libanio D, Bastiaansen BAJ, et al. Endoscopic submucosal dissection for superficial gastrointestinal lesions: European Society of Gastrointestinal Endoscopy (ESGE) Guideline - Update 2022. Endoscopy, 2022, 54(6): 591-622.
|
| 55. |
Cao B, Lu J, Tan Y, et al. Efficacy and safety of submucosal tunneling endoscopic resection for gastric submucosal tumors: a systematic review and meta-analysis. Rev Esp Enferm Dig, 2021, 113(1): 52-59.
|
| 56. |
Duan C, Liu Z, Wang X, et al. New chapter in precision medicine: strategies for endoscopic resection of 10-20 mm non-pedunculated colorectal polyps. Therap Adv Gastroenterol, 2025, 18: 17562848251338672.
|
| 57. |
Libanio D, Pimentel-Nunes P, Bastiaansen B, et al. Endoscopic submucosal dissection techniques and technology: European Society of Gastrointestinal Endoscopy (ESGE) Technical Review. Endoscopy, 2023, 55(4): 361-389.
|
| 58. |
Tang B, Shan J, Yuan T, et al. Hydroxypropylcellulose enhanced high viscosity endoscopic mucosal dissection intraoperative chitosan thermosensitive hydrogel. Carbohydr Polym, 2019, 209: 198-206.
|
| 59. |
Wang Y, Su Y, Zhu Y, et al. Research on triamcinolone-loaded thermosensitive chitosan hydrogels for preventing esophageal stricture induced by endoscopic submucosal dissection. Int J Biol Macromol, 2024, 261(Pt 1): 129679.
|
| 60. |
Lorenzo-Zú?iga V, Boix J, Moreno de Vega V, et al. Endoscopic shielding technique with a newly developed hydrogel to prevent thermal injury in two experimental models. Dig Endosc, 2017, 29(6): 702-711.
|
| 61. |
Shi X, Wu J, Wang Z, et al. Synthesis and properties of a temperature-sensitive hydrogel based on physical crosslinking via stereocomplexation of PLLA-PDLA. RSC Adv, 2020, 10(34): 19759-19769.
|
| 62. |
Yang CH, Qiu Y, Li X, et al. Bleeding after endoscopic submucosal dissection of gastric lesions. J Dig Dis, 2020, 21(3): 139-146.
|
| 63. |
Fang W, Yang L, Hong L, et al. A chitosan hydrogel sealant with self-contractile characteristic: from rapid and long-term hemorrhage control to wound closure and repair. Carbohydr Polym, 2021, 271: 118428.
|
| 64. |
Guo J, Ye L, Gao Y, et al. Hybrid dry powders for rapid sealing of gastric perforations under an endoscope. ACS Nano, 2023, 17(10): 9521-9528.
|
| 65. |
Liang Y, Wu Z, Wei Y, et al. Self-healing, self-adhesive and stable organohydrogel-based stretchable oxygen sensor with high performance at room temperature. Nanomicro Lett, 2022, 14(1): 52.
|
| 66. |
Richter JE, Wu WC, Johns DN, et al. Esophageal manometry in 95 healthy adult volunteers. Variability of pressures with age and frequency of “abnormal” contractions. Dig Dis Sci, 1987, 32(6): 583-592.
|
| 67. |
Liu X, Steiger C, Lin S, et al. Ingestible hydrogel device. Nat Commun, 2019, 10(1): 493.
|
| 68. |
Li J, Celiz AD, Yang J, et al. Tough adhesives for diverse wet surfaces. Science, 2017, 357(6349): 378-381.
|
| 69. |
郭竣暢. 生物粘附粉末水凝膠的制備及其應用研究. 成都: 電子科技大學, 2023.
|
| 70. |
He J, Zhang Z, Yang Y, et al. Injectable self-healing adhesive ph-responsive hydrogels accelerate gastric hemostasis and wound healing. Nanomicro Lett, 2021, 13(1): 80.
|
| 71. |
Awashra M, Jokinen V. Superhydrophobic cell-repellent microstructures: plastron-mediated inhibition of A549 epithelial cell adhesion. Small, 2025, 21(40): e06022.
|
| 72. |
魏思睿. 親/疏水 Janus 聚合物復合膜的構建及其在硬腦膜缺損中的應用. 武漢: 華中科技大學, 2023.
|
| 73. |
Hirose R, Nakaya T, Naito Y, et al. An innovative next-generation endoscopic submucosal injection material with a 2-step injection system (with video). Gastrointest Endosc, 2021, 93(2): 503-513.
|
| 74. |
Chen Z, Ding J, Wu C, et al. A review of hydrogels used in endoscopic submucosal dissection for intraoperative submucosal cushions and postoperative management. Regen Biomater, 2023, 10: rbad064.
|
| 75. |
Liu Y, Lang C, Zhang K, et al. Injectable chitosan-polyvinylpyrrolidone composite thermosensitive hydrogels with sustained submucosal lifting for endoscopic submucosal dissection. Int J Biol Macromol, 2024, 276(Pt 1): 133165.
|
| 76. |
Gu R, Zhou H, Zhang Z, et al. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. Nanoscale Adv, 2023, 5(22): 6017-6037.
|
| 77. |
Xie Y, Ma Y, Xu L, et al. Inhibition of angiogenesis and effect on inflammatory bowel disease of ginsenoside Rg3-loaded thermosensitive hydrogel. Pharmaceutics, 2024, 16(10): 1243.
|
| 78. |
Lei F, Zeng F, Yu X, et al. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair. J Nanobiotechnology, 2023, 21(1): 275.
|
| 79. |
楊懷. 聚(N-異丙基丙烯酰胺)基可注射溫敏型聚合物水凝膠的制備及生物應用. 合肥: 合肥工業大學, 2022.
|
| 80. |
Salis A, Rassu G, Budai-Sz?cs M, et al. Development of thermosensitive chitosan/glicerophospate injectable in situ gelling solutions for potential application in intraoperative fluorescence imaging and local therapy of hepatocellular carcinoma: a preliminary study. Expert Opin Drug Deliv, 2015, 12(10): 1583-1596.
|
| 81. |
Municoy S, álvarez Echazú MI, Antezana PE, et al. Stimuli-responsive materials for tissue engineering and drug delivery. Int J Mol Sci, 2020, 21(13): 4724.
|
| 82. |
Spatarelu CP, Jandhyala S, Luke GP. Dual-drug loaded ultrasound-responsive nanodroplets for on-demand combination chemotherapy. Ultrasonics, 2023, 133: 107056.
|
| 83. |
Bordbar-Khiabani A, Gasik M. Smart hydrogels for advanced drug delivery systems. Int J Mol Sci, 2022, 23(7): 3665.
|