| 1. |
Cruz-Jentoft AJ, Sayer AA. Sarcopenia. Lancet, 2019, 393(10191): 2636-2646.
|
| 2. |
Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle, 2022, 13(1): 86-99.
|
| 3. |
Chen Z, Li WY, Ho M, et al. The prevalence of sarcopenia in Chinese older adults: meta-analysis and meta-regression. Nutrients, 2021, 13(5): 1441.
|
| 4. |
Lan L, Shao S, Zheng X. Associations between sarcopenia and trajectories of activities of daily living disability: a nationwide longitudinal study of middle-aged and older adults in China from 2011 to 2018. Arch Public Health, 2024, 82(1): 97.
|
| 5. |
Houston DK, Nicklas BJ, Ding J, et al. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: the Health, Aging, and Body Composition (Health ABC) Study. Am J Clin Nutr, 2008, 87(1): 150-155.
|
| 6. |
Liu ZJ, Zhu CF. Causal relationship between insulin resistance and sarcopenia. Diabetol Metab Syndr, 2023, 15(1): 46.
|
| 7. |
Mo Y, Zhou Y, Chan H, et al. The association between sedentary behaviour and sarcopenia in older adults: a systematic review and meta-analysis. BMC Geriatr, 2023, 23(1): 877.
|
| 8. |
Xie S, Wu Q. Association between the systemic immune-inflammation index and sarcopenia: a systematic review and meta-analysis. J Orthop Surg Res, 2024, 19(1): 314.
|
| 9. |
Lo JH, U KP, Yiu T, et al. Sarcopenia: current treatments and new regenerative therapeutic approaches. J Orthop Translat, 2020, 23: 38-52.
|
| 10. |
Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70(6): 1174-1182.
|
| 11. |
Mancin L, Wu GD, Paoli A. Gut microbiota-bile acid-skeletal muscle axis. Trends Microbiol, 2023, 31(3): 254-269.
|
| 12. |
Lynch SV, Pedersen O. The human intestinal microbiome in health and disease. N Engl J Med, 2016, 375(24): 2369-2379.
|
| 13. |
DeJong EN, Surette MG, Bowdish DME. The gut microbiota and unhealthy aging: disentangling cause from consequence. Cell Host Microbe, 2020, 28(2): 180-189.
|
| 14. |
Hawley JA. Microbiota and muscle highway - two way traffic. Nat Rev Endocrinol, 2020, 16(2): 71-72.
|
| 15. |
Coman V, Vodnar DC. Gut microbiota and old age: modulating factors and interventions for healthy longevity. Exp Gerontol, 2020, 141: 111095.
|
| 16. |
Cao Y, Oh J, Xue M, et al. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science, 2022, 378(6618): eabm3233.
|
| 17. |
Guo CJ. Immune activation kickstarts the gut microbiota. Cell Host Microbe, 2021, 29(3): 318-320.
|
| 18. |
Kim KH, Chung Y, Huh JW, et al. Gut microbiota of the young ameliorates physical fitness of the aged in mice. Microbiome, 2022, 10(1): 238.
|
| 19. |
Mo X, Shen L, Cheng R, et al. Faecal microbiota transplantation from young rats attenuates age-related sarcopenia revealed by multiomics analysis. J Cachexia Sarcopenia Muscle, 2023, 14(5): 2168-2183.
|
| 20. |
Chen S, Zhang P, Duan H, et al. Gut microbiota in muscular atrophy development, progression, and treatment: new therapeutic targets and opportunities. Innovation (Camb), 2023, 4(5): 100479.
|
| 21. |
Xu L, Mao T, Xia M, et al. New evidence for gut-muscle axis: lactic acid bacteria-induced gut microbiota regulates duck meat flavor. Food Chem, 2024, 450: 139354.
|
| 22. |
Severinsen MCK, Pedersen BK. Muscle-organ crosstalk: the emerging roles of myokines. Endocr Rev, 2020, 41(4): 594-609.
|
| 23. |
Sartori R, Romanello V, Sandri M. Mechanisms of muscle atrophy and hypertrophy: implications in health and disease. Nat Commun, 2021, 12(1): 330.
|
| 24. |
Schiaffino S, Dyar KA, Ciciliot S, et al. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J, 2013, 280(17): 4294-4314.
|
| 25. |
Lahiri S, Kim H, Garcia-Perez I, et al. The gut microbiota influences skeletal muscle mass and function in mice. Sci Transl Med, 2019, 11(502): eaan5662.
|
| 26. |
Emdin CA, Khera AV, Kathiresan S. Mendelian randomization. JAMA, 2017, 318(19): 1925-1926.
|
| 27. |
Zhao J, Liang R, Song Q, et al. Investigating association between gut microbiota and sarcopenia-related traits: a Mendelian randomization study. Precis Clin Med, 2023, 6(2): pbad010.
|
| 28. |
Wahlstr?m A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab, 2016, 24(1): 41-50.
|
| 29. |
Qiu Y, Yu J, Li Y, et al. Depletion of gut microbiota induces skeletal muscle atrophy by FXR-FGF15/19 signalling. Ann Med, 2021, 53(1): 508-522.
|
| 30. |
Qiu Y, Yu J, Ji X, et al. Ileal FXR-FGF15/19 signaling activation improves skeletal muscle loss in aged mice. Mech Ageing Dev, 2022, 202: 111630.
|
| 31. |
Benoit B, Meugnier E, Castelli M, et al. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med, 2017, 23(8): 990-996.
|
| 32. |
Krautkramer KA, Fan J, B?ckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol, 2021, 19(2): 77-94.
|
| 33. |
Tang G, Du Y, Guan H, et al. Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals. Br J Pharmacol, 2022, 179(1): 159-178.
|
| 34. |
Liu C, Wong PY, Wang Q, et al. Short-chain fatty acids enhance muscle mass and function through the activation of mTOR signalling pathways in sarcopenic mice. J Cachexia Sarcopenia Muscle, 2024, 15(6): 2387-2401.
|
| 35. |
Frampton J, Murphy KG, Frost G, et al. Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab, 2020, 2(9): 840-848.
|
| 36. |
Tan J, McKenzie C, Potamitis M, et al. The role of short-chain fatty acids in health and disease. Adv Immunol, 2014, 121: 91-119.
|
| 37. |
Huang W, Man Y, Gao C, et al. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signaling. Oxid Med Cell Longev, 2020, 2020: 4074832.
|
| 38. |
Vacca M, Celano G, Calabrese FM, et al. The controversial role of human gut lachnospiraceae. Microorganisms, 2020, 8(4): 573.
|
| 39. |
Jollet M, Nay K, Chopard A, et al. Does physical inactivity induce significant changes in human gut microbiota? New answers using the dry immersion hypoactivity model. Nutrients, 2021, 13(11): 3865.
|
| 40. |
Buigues C, Fernández-Garrido J, Pruimboom L, et al. Effect of a prebiotic formulation on frailty syndrome: a randomized, double-blind clinical trial. Int J Mol Sci, 2016, 17(6): 932.
|
| 41. |
Chen LH, Chang SS, Chang HY, et al. Probiotic supplementation attenuates age-related sarcopenia via the gut-muscle axis in SAMP8 mice. J Cachexia Sarcopenia Muscle, 2022, 13(1): 515-531.
|
| 42. |
Zhou J, Liu J, Lin Q, et al. Characteristics of the gut microbiome and metabolic profile in elderly patients with sarcopenia. Front Pharmacol, 2023, 14: 1279448.
|
| 43. |
Ni Y, Yang X, Zheng L, et al. Lactobacillus and bifidobacterium improves physiological function and cognitive ability in aged mice by the regulation of gut microbiota. Mol Nutr Food Res, 2019, 63(22): e1900603.
|
| 44. |
Picca A, Ponziani FR, Calvani R, et al. Gut microbial, inflammatory and metabolic signatures in older people with physical frailty and sarcopenia: results from the BIOSPHERE study. Nutrients, 2019, 12(1): 65.
|
| 45. |
Castro-Mejía JL, Khakimov B, Krych ?, et al. Physical fitness in community-dwelling older adults is linked to dietary intake, gut microbiota, and metabolomic signatures. Aging Cell, 2020, 19(3): e13105.
|
| 46. |
Kim YS, Unno T, Kim BY, et al. Sex differences in gut microbiota. World J Mens Health, 2020, 38(1): 48-60.
|
| 47. |
Rondanelli M, Gasparri C, Barrile GC, et al. Effectiveness of a novel food composed of leucine, omega-3 fatty acids and probiotic Lactobacillus paracasei PS23 for the treatment of sarcopenia in elderly subjects: a 2-month randomized double-blind placebo-controlled trial. Nutrients, 2022, 14(21): 4566.
|
| 48. |
Chen YM, Wei L, Chiu YS, et al. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice. Nutrients, 2016, 8(4): 205.
|
| 49. |
Huang WC, Lee MC, Lee CC, et al. Effect of Lactobacillus plantarum TWK10 on exercise physiological adaptation, performance, and body composition in healthy humans. Nutrients, 2019, 11(11): 2836.
|
| 50. |
Huang WC, Hsu YJ, Huang CC, et al. Exercise training combined with Bifidobacterium longum OLP-01 supplementation improves exercise physiological adaption and performance. Nutrients, 2020, 12(4): 1145.
|