| 1. |
Qin L, Yang S, Zhao C, et al. Prospects and challenges for the application of tissue engineering technologies in the treatment of bone infections. Bone Res, 2024, 12(1): 28.
|
| 2. |
楊星, 周明旺, 王曉萍, 等. 新型抗菌材料治療感染性骨缺損的機制與臨床應用研究進展. 中華醫院感染學雜志, 2025(19): 3031-3035.
|
| 3. |
Malat TA, Glombitza M, Dahmen J, et al. The use of bioactive glass S53P4 as bone graft substitute in the treatment of chronic osteomyelitis and infected non-unions - a retrospective study of 50 patients. Z Orthop Unfall, 2018, 156(2): 152-159.
|
| 4. |
Wang Q, Chen C, Liu W, et al. Levofloxacin loaded mesoporous silica microspheres/nano-hydroxyapatite/polyurethane composite scaffold for the treatment of chronic osteomyelitis with bone defects. Sci Rep, 2017, 7: 41808.
|
| 5. |
祝勇剛, 張大偉, 趙廣躍, 等. 抗生素骨水泥聯合自體骨移植及環形外固定架修復骨髓炎后脛骨缺損. 中國組織工程研究, 2015(25): 3942-3946.
|
| 6. |
Liu Y, Li X, Liang A. Current research progress of local drug delivery systems based on biodegradable polymers in treating chronic osteomyelitis. Front Bioeng Biotechnol, 2022, 10: 1042128.
|
| 7. |
Perez JR, Kouroupis D, Li DJ, et al. Tissue engineering and cell-based therapies for fractures and bone defects. Front Bioeng Biotechnol, 2018, 6: 105.
|
| 8. |
Jiang C, Zhu G, Liu Q. Current application and future perspectives of antimicrobial degradable bone substitutes for chronic osteomyelitis. Front Bioeng Biotechnol, 2024, 12: 1375266.
|
| 9. |
梁梟, 吳錦秋, 袁凌偉, 等. 可降解生物材料應用于修復感染性骨缺損的研究進展. 生物骨科材料與臨床研究, 2024, 21(5): 71-76.
|
| 10. |
Yuan X, Zhu W, Yang Z, et al. Recent advances in 3D printing of smart scaffolds for bone tissue engineering and regeneration. Adv Mater, 2024, 36(34): e2403641.
|
| 11. |
Yazdanpanah Z, Johnston JD, Cooper DML, et al. 3D bioprinted scaffolds for bone tissue engineering: state-of-the-art and emerging technologies. Front Bioeng Biotechnol, 2022, 10: 824156.
|
| 12. |
Cioc?lteu MV, Mocanu AG, Bi?? A, et al. Development of hybrid implantable local release systems based on PLGA nanoparticles with applications in bone diseases. Polymers (Basel), 2024, 16(21): 3064.
|
| 13. |
邵云菲, 王卉, 朱怡然, 等. 基于絲素蛋白材料構建骨組織修復支架的三維多孔結構體系的研究進展. 合成生物學, 2022, 3(4): 795-809.
|
| 14. |
Krishnan AG, Biswas R, Menon D, Nair MB. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Biomater Sci. 2020;8(9): 2653-2665.
|
| 15. |
Hassani Besheli N, Mottaghitalab F, Eslami M, et al. Sustainable release of vancomycin from silk fibroin nanoparticles for treating severe bone infection in rat tibia osteomyelitis model. ACS Appl Mater Interfaces, 2017, 9(6): 5128-5138.
|
| 16. |
Donos N, Akcali A, Padhye N, et al. Bone regeneration in implant dentistry: which are the factors affecting the clinical outcome?. Periodontol 2000, 2023, 93(1): 26-55.
|
| 17. |
Lu M, Liao J, Dong J, et al. An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci Rep, 2016, 6: 39174.
|
| 18. |
Zhu C, He M, Sun D, et al. 3D-printed multifunctional polyetheretherketone bone scaffold for multimodal treatment of osteosarcoma and osteomyelitis. ACS Appl Mater Interfaces, 2021, 13(40): 47327-47340.
|
| 19. |
Pajarinen J, Lin T, Gibon E, et al. Mesenchymal stem cell-macrophage crosstalk and bone healing. Biomaterials, 2019, 196: 80-89.
|
| 20. |
Roy S, Wang S, Ullah Z, et al. Defect-engineered biomimetic piezoelectric nanocomposites with enhanced ROS production, macrophage re-polarization, and Ca2+ channel activation for therapy of MRSA-infected wounds and osteomyelitis. Small, 2025, 21(10): e2411906.
|
| 21. |
Yu H, VandeVord PJ, Mao L, et al. Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials, 2009, 30(4): 508-517.
|
| 22. |
姜壯, 王華松, 豐瑞兵, 等. 生長因子在骨折愈合過程中的作用及其機制的研究進展. 華南國防醫學雜志, 2020, 34(11): 823-827.
|
| 23. |
Chen X, Sun Z, Peng X, et al. Graphene oxide/black phosphorus functionalized collagen scaffolds with enhanced near-infrared controlled in situ biomineralization for promoting infectious bone defect repair through PI3K/Akt pathway. ACS Appl Mater Interfaces, 2024, 16(38): 50369-50388.
|
| 24. |
Zhou X, Qian Y, Chen L, et al. Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano, 2023, 17(5): 5140-5156.
|
| 25. |
郭政, 田征. 3D 打印技術在四肢長骨骨腫瘤切除后大節段骨缺損的重建優勢. 現代醫學與健康研究(電子版), 2024, 8(2): 109-114.
|
| 26. |
田帥帥, 魏佳慶, 任曉旋, 等. 橈骨遠端骨巨細胞瘤整塊切除術后腕關節重建方法. 國際骨科學雜志, 2023, 44(6): 349-352.
|
| 27. |
Chen Z, Xing Y, Li X, et al. 3D-printed titanium porous prosthesis combined with the Masquelet technique for the management of large femoral bone defect caused by osteomyelitis. BMC Musculoskelet Disord, 2024, 25(1): 474.
|
| 28. |
Liu B, Wang L, Li X, et al. Applying 3D-printed prostheses to reconstruct critical-sized bone defects of tibial diaphysis (> 10 cm) caused by osteomyelitis and aseptic non-union. J Orthop Surg Res, 2024, 19(1): 418.
|
| 29. |
胡慶柳. 磷酸氫鈣/膠原復合人工骨與羥基磷灰石/膠原復合人工骨修復大段骨缺損的比較. 中國組織工程研究與臨床康復, 2010, 14(47): 8759-8763.
|
| 30. |
黃曉夏, 王江華, 李璐遙, 等. 聚富馬酸丙二醇酯復合材料應用于感染性骨缺損的研究進展. 中華骨與關節外科雜志, 2024, 17(11): 1042-1047.
|
| 31. |
Romanò CL, Logoluso N, Meani E, et al. A comparative study of the use of bioactive glass S53P4 and antibiotic-loaded calcium-based bone substitutes in the treatment of chronic osteomyelitis: a retrospective comparative study. Bone Joint J, 2014, 96-B(6): 845-850.
|
| 32. |
Wang L, Yang Q, Huo M, et al. Engineering single-atomic iron-catalyst-integrated 3d-printed bioscaffolds for osteosarcoma destruction with antibacterial and bone defect regeneration bioactivity. Adv Mater, 2021, 33(31): e2100150.
|
| 33. |
Yang F, Shi Z, Hu Y, et al. Nanohybrid hydrogel with dual functions: controlled low-temperature photothermal antibacterial activity and promoted regeneration for treating MRSA-infected bone defects. Adv Healthc Mater, 2025, 14(11): e2500092.
|
| 34. |
孔春茹, 唐曉鐸, 常蓓. Mg-多酚復合功能雙網絡凝膠支架促進感染性骨缺損再生的研究//中華口腔醫學會口腔生物醫學專業委員會, 中華口腔醫學會口腔病理學專業委員會. 中華口腔醫學會口腔生物醫學專業委員會第 14 次口腔生物醫學學術年會中華口腔醫學會口腔病理學專業委員會第 18 次口腔病理學術年會論文集. 長春: 吉林大學口腔醫院, 2024: 206.
|
| 35. |
Zhang P, Qin J, Zhang B, et al. Gentamicin-loaded silk/nanosilver composite scaffolds for MRSA-induced chronic osteomyelitis. R Soc Open Sci, 2019, 6(5): 182102.
|
| 36. |
Mulazzi M, Campodoni E, Bassi G, et al. Medicated hydroxyapatite/collagen hybrid scaffolds for bone regeneration and local antimicrobial therapy to prevent bone infections. Pharmaceutics, 2021, 13(7): 1090.
|