| 1. |
Cyske Z, Radzanowska-Alenowicz E, Rintz E, et al. The rare disease burden: a multidimensional challenge. Acta Biochim Pol, 2025, 72: 14777.
|
| 2. |
The Lancet Diabetes Endocrinology. Spotlight on rare diseases. Lancet Diabetes Endocrinol, 2019, 7(2): 75.
|
| 3. |
Ferreira CR. The burden of rare diseases. Am J Med Genet A, 2019, 179(6): 885-892.
|
| 4. |
張抒揚, 董咚. 2020 中國罕見病綜合社會調研. 北京: 人民衛生出版社, 2020.
|
| 5. |
張抒揚. 2022 年中國罕見病臨床診療現狀調研報告. 北京: 人民衛生出版社, 2023.
|
| 6. |
Schaefer J, Lehne M, Schepers J, et al. The use of machine learning in rare diseases: a scoping review. Orphanet J Rare Dis, 2020, 15(1): 145.
|
| 7. |
Song J, He M, Zheng X, et al. Face-based machine learning diagnostics: applications, challenges and opportunities. Artif Intell Rev, 2025, 58(8): 1-71.
|
| 8. |
Gurovich Y, Hanani Y, Bar O, et al. Identifying facial phenotypes of genetic disorders using deep learning. Nat Med, 2019, 25(1): 60-64.
|
| 9. |
Yamada Y, Kobayashi M, Shinkawa K, et al. Utility of synthetic musculoskeletal gaits for generalizable healthcare applications. Nat Commun, 2025, 16(1): 6188.
|
| 10. |
Jee J, Fong C, Pichotta K, et al. Automated real-world data integration improves cancer outcome prediction. Nature, 2024, 636(8043): 728-736.
|
| 11. |
龔力, 周永召, 何謙, 等. 互聯網+數智賦能: 罕見病全程管理的華西創新與實踐. 華西醫學, 2025, 40(8): 1309-1312.
|
| 12. |
Michalski AA, Lis K, Stankiewicz J, et al. Supporting the diagnosis of fabry disease using a natural language processing-based approach. J Clin Med, 2023, 12(10): 3599.
|
| 13. |
Supernat A, Vidarsson OV, Steen VM, et al. Comparison of three variant callers for human whole genome sequencing. Sci Rep, 2018, 8(1): 17851.
|
| 14. |
Cheng J, Novati G, Pan J, et al. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science, 2023, 381(6664): eadg7492.
|
| 15. |
王煜坤, 劉潔. 人工智能助力皮膚罕見病診療. 罕見病研究, 2023, 2(2): 157-163.
|
| 16. |
Zhao W, Wu C, Fan Y, et al. An agentic system for rare disease diagnosis with traceable reasoning. ArXiv, 2025: 2506.20430v1cs.
|
| 17. |
Chirmule N, Feng H, Cyril E, et al. Orphan drug development: challenges, regulation, and success stories. J Biosci, 2024, 49: 30.
|
| 18. |
弓孟春, 焦塬石, 馬武仁, 等. 人工智能支持罕見病診療的研究進展. 罕見病研究, 2022, 1(2): 101-109.
|
| 19. |
Xu Z, Ren F, Wang P, et al. A generative AI-discovered TNIK inhibitor for idiopathic pulmonary fibrosis: a randomized phase 2a trial. Nat Med, 2025, 31(8): 2602-2610.
|
| 20. |
Huang K, Chandak P, Wang Q, et al. A foundation model for clinician-centered drug repurposing. Nat Med, 2024, 30(12): 3601-3613.
|
| 21. |
任建偉, 鄭昕, 韓曉紅. 腺相關病毒載體基因治療藥物生物分析技術及藥代/藥效動力學研究進展. 罕見病研究, 2024, 3(3): 350-357.
|
| 22. |
Eid FE, Chen AT, Chan KY, et al. Systematic multi-trait AAV capsid engineering for efficient gene delivery. Nat Commun, 2024, 15(1): 6602.
|
| 23. |
Song C, Wang Q, Zhu P, et al. Efficacy and preliminary safety assessment of EXG001-307 AAV gene therapy for spinal muscular atrophy. Mol Ther Methods Clin Dev, 2025, 33(2): 101475.
|
| 24. |
Raycheva R, Kostadinov K, Mitova E, et al. Challenges in mapping European rare disease databases, relevant for ML-based screening technologies in terms of organizational, FAIR and legal principles: scoping review. Front Public Health, 2023, 11: 1214766.
|
| 25. |
Gostin LO, Halabi SF, Wilson K. Health data and privacy in the digital era. JAMA, 2018, 320(3): 233-234.
|
| 26. |
Shaw J, Rudzicz F, Jamieson T, et al. Artificial intelligence and the implementation challenge. J Med Internet Res, 2019, 21(7): e13659.
|
| 27. |
何麗. 人工智能輔助醫療決策的歸責難題新解. 自然辯證法研究, 2023, 39(6): 65-71.
|