| 1. |
Luc G, Baert V, Escutnaire J, et al. Epidemiology of out-of-hospital cardiac arrest: A French national incidence and mid-term survival rate study. Anaesth Crit Care Pain Med, 2019, 38(2): 131-135.
|
| 2. |
張建閣, 秦歷杰, 程艷偉. 骨髓腔通路在院外心臟驟停中的應用進展及思考. 中國急救醫學, 2021, 41(9): 817-820.
|
| 3. |
Tian S, Niu S, Zhang L, et al. National survey of do not attempt resuscitation decisions on out-of-hospital cardiac arrest in China. BMC Emerg Med, 2022, 22(1): 25.
|
| 4. |
李春林, 趙翠, 司遷, 等. 智慧醫療的發展現狀與未來. 生命科學儀器, 2021, 19(2): 4-13.
|
| 5. |
賀冰潔, 陳暐燁, 劉立立, 等. 宮頸癌發病風險預測模型的系統綜述. 中華流行病學雜志, 2021, 42(10): 1855-1862.
|
| 6. |
Lam K, Chen J, Wang Z, et al. Machine learning for technical skill assessment in surgery: A systematic review. NPJ Digit Med, 2022, 5(1): 24.
|
| 7. |
Heo J, Yoon JG, Park H, et al. Machine learning-based model for prediction of outcomes in acute stroke. Stroke, 2019, 50(5): 1263-1265.
|
| 8. |
中華醫學會, 中華醫學會雜志社, 中華醫學會全科醫學分會, 等. 心臟驟停基層診療指南(2019年). 中華全科醫師雜志, 2019, 18(11): 1034-1041.
|
| 9. |
張丹妮, 沈理, 張俊, 等. 胃超聲檢查對胃癌診斷價值的Meta分析. 中華醫學超聲雜志(電子版), 2021, 18(4): 344-354.
|
| 10. |
Shih HM, Chen YC, Chen CY, et al. Derivation and validation of the SWAP score for very early prediction of neurologic outcome in patients with out-of-hospital cardiac arrest. Ann Emerg Med, 2019, 73(6): 578-588.
|
| 11. |
Seki T, Tamura T, Suzuki M, et al. Outcome prediction of out-of-hospital cardiac arrest with presumed cardiac aetiology using an advanced machine learning technique. Resuscitation, 2019, 141: 128-135.
|
| 12. |
Pérez-Castellanos A, Martínez-Sellés M, Uribarri A, et al. Development and external validation of an early prognostic model for survivors of out-of-hospital cardiac arrest. Rev Esp Cardiol (Engl Ed), 2019, 72(7): 535-542.
|
| 13. |
P?tz T, Stelzig K, Pfeifer R, et al. Age-associated outcomes after survived out-of-hospital cardiac arrest and subsequent target temperature management. Acta Anaesthesiol Scand, 2019, 63(8): 1079-1088.
|
| 14. |
Park JH, Shin SD, Song KJ, et al. Prediction of good neurological recovery after out-of-hospital cardiac arrest: A machine learning analysis. Resuscitation, 2019, 142: 127-135.
|
| 15. |
Pareek N, Kordis P, Beckley-Hoelscher N, et al. A practical risk score for early prediction of neurological outcome after out-of-hospital cardiac arrest: MIRACLE2. Eur Heart J, 2020, 41(47): 4508-4517.
|
| 16. |
Okada Y, Kiguchi T, Irisawa T, et al. Development and validation of a clinical score to predict neurological outcomes in patients with out-of-hospital cardiac arrest treated with extracorporeal cardiopulmonary resuscitation. JAMA Netw Open, 2020, 3(11): e2022920.
|
| 17. |
Okada K, Ohde S, Otani N, et al. Prediction protocol for neurological outcome for survivors of out-of-hospital cardiac arrest treated with targeted temperature management. Resuscitation, 2012, 83(6): 734-739.
|
| 18. |
Kwon JM, Jeon KH, Kim HM, et al. Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes. Resuscitation, 2019, 139: 84-91.
|
| 19. |
Kim JH, Kim MJ, You JS, et al. Multimodal approach for neurologic prognostication of out-of-hospital cardiac arrest patients undergoing targeted temperature management. Resuscitation, 2019, 134: 33-40.
|
| 20. |
Heo JH, Kim T, Shin J, et al. Prediction of neurological outcomes in out-of-hospital cardiac arrest survivors immediately after return of spontaneous circulation: Ensemble technique with four machine learning models. J Korean Med Sci, 2021, 36(28): e187.
|
| 21. |
Harford S, Darabi H, Del Rios M, et al. A machine learning based model for out of hospital cardiac arrest outcome classification and sensitivity analysis. Resuscitation, 2019, 138: 134-140.
|
| 22. |
Goto Y, Maeda T, Nakatsu-Goto Y. Decision tree model for predicting long-term outcomes in children with out-of-hospital cardiac arrest: A nationwide, population-based observational study. Crit Care, 2014, 18(3): R133.
|
| 23. |
Einav S, Kaufman N, Algur N, et al. Brain biomarkers and management of uncertainty in predicting outcome of cardiopulmonary resuscitation: A nomogram paints a thousand words. Resuscitation, 2013, 84(8): 1083-1088.
|
| 24. |
Eertmans W, Tran TMP, Genbrugge C, et al. A prediction model for good neurological outcome in successfully resuscitated out-of-hospital cardiac arrest patients. Scand J Trauma Resusc Emerg Med, 2018, 26(1): 93.
|
| 25. |
Dutta A, Alirhayim Z, Masmoudi Y, et al. Brain natriuretic peptide as a marker of adverse neurological outcomes among survivors of cardiac arrest. J Intensive Care Med, 2022, 37(6): 803-809.
|
| 26. |
Cheong RW, Li H, Doctor NE, et al. Termination of resuscitation rules to predict neurological outcomes in out-of-hospital cardiac arrest for an intermediate life support prehospital system. Prehosp Emerg Care, 2016, 20(5): 623-629.
|
| 27. |
Cheng CY, Chiu IM, Zeng WH, et al. Machine learning models for survival and neurological outcome prediction of out-of-hospital cardiac arrest patients. Biomed Res Int, 2021, 2021: 9590131.
|
| 28. |
Andersson P, Johnsson J, Bj?rnsson O, et al. Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm. Crit Care, 2021, 25(1): 83.
|
| 29. |
Ahn S, Lee BK, Youn CS, et al. Predictors of good neurologic outcome after resuscitation beyond 30 min in out-of-hospital cardiac arrest patients undergoing therapeutic hypothermia. Intern Emerg Med, 2018, 13(3): 413-419.
|
| 30. |
Ryoo SM, Jeon SB, Sohn CH, et al. Predicting outcome with diffusion-weighted imaging in cardiac arrest patients receiving hypothermia therapy: Multicenter retrospective cohort study. Crit Care Med, 2015, 43(11): 2370-2377.
|
| 31. |
Kim HS, Park KN, Kim SH, et al. Prognostic value of OHCA, C-GRApH and CAHP scores with initial neurologic examinations to predict neurologic outcomes in cardiac arrest patients treated with targeted temperature management. PLoS One, 2020, 15(4): e0232227.
|
| 32. |
李發揮, 李雁浩, 桂逢烯, 等. 聲空化對巨噬細胞損傷效應的人工神經網絡自適應模型辨識. 中國超聲醫學雜志, 2020, 36(3): 269-272.
|
| 33. |
劉雨安, 楊小文, 李樂之. 機器學習在疾病預測的應用研究進展. 護理學報, 2021, 28(7): 30-34.
|
| 34. |
崔建偉, 趙哲, 杜小勇. 支撐機器學習的數據管理技術綜述. 軟件學報, 2021, 32(3): 604-621.
|
| 35. |
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol, 2020, 9(2): 14.
|
| 36. |
Connor CW. Artificial intelligence and machine learning in anesthesiology. Anesthesiology, 2019, 131(6): 1346-1359.
|
| 37. |
Arshaghi A, Ashourian M, Ghabeli L. Denoising medical images using machine learning, deep learning approaches: A survey. Curr Med Imaging, 2021, 17(5): 578-594.
|
| 38. |
李郅琴, 杜建強, 聶斌, 等. 特征選擇方法綜述. 計算機工程與應用, 2019, 55(24): 10-19.
|
| 39. |
李舵, 董超群, 司品超, 等. 神經網絡驗證和測試技術研究綜述. 計算機工程與應用, 2021, 57(22): 53-67.
|
| 40. |
夏佳志, 李杰, 陳思明, 等. 可視化與人工智能交叉研究綜述. 中國科學:信息科學, 2021, 51(11): 1777-1801.
|
| 41. |
紀守領, 杜天宇, 李進鋒, 等. 機器學習模型安全與隱私研究綜述. 軟件學報, 2021, 32(1): 41-67.
|
| 42. |
Chen S, Lachance BB, Gao L, et al. Targeted temperature management and early neuro-prognostication after cardiac arrest. J Cereb Blood Flow Metab, 2021, 41(6): 1193-1209.
|