| 1. |
Spagnolo P, Kropski JA, Jones MG, et al. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol Ther, 2021, 222: 107798.
|
| 2. |
Cottin V, Hirani NA, Hotchkin DL, et al. Presentation, diagnosis and clinical course of the spectrum of progressive-fibrosing interstitial lung diseases. Eur Respir Rev, 2018, 27(150): 180076.
|
| 3. |
Sgalla G, Kulkarni T, Antin-Ozerkis D, et al. Update in pulmonary fibrosis 2018. Am J Respir Crit Care Med, 2019, 200(3): 292-300.
|
| 4. |
Vaz M, Hwang SY, Kagiampakis I, et al. Chronic cigarette smoke-induced epigenomic changes precede sensitization of bronchial epithelial cells to single-step transformation by KRAS mutations. Cancer Cell, 2017, 32(3): 360-376.
|
| 5. |
Moore BB, Moore TA. Viruses in idiopathic pulmonary fibrosis. Etiology and exacerbation. Ann Am Thorac Soc, 2015, 12 Suppl 2(Suppl 2): S186-S192.
|
| 6. |
Sack C, Raghu G. Idiopathic pulmonary fibrosis: Unmasking cryptogenic environmental factors. Eur Respir J, 2019, 53(2): 1801699.
|
| 7. |
Yang L, Sakandar HA, Sun Z, et al. Recent advances of intestinal microbiota transmission from mother to infant. J Funct Foods. 2021, 87: 104719.
|
| 8. |
師曉棟, 趙晗, 劉東山. 腸道菌群在肺纖維化疾病中的調節作用. 生物化學與生物物理進展, 2023, 50(2): 252-264.
|
| 9. |
武文娟, 吳紀珍, 黃改榮, 等. 老年腸道菌群失調與特發性肺纖維化患者心力衰竭的相關性研究. 中華老年心腦血管病雜志. 2022, 24 (1): 14-16.
|
| 10. |
Gong GC, Song SR, Su J. Pulmonary fibrosis alters gut microbiota and associated metabolites in mice: An integrated 16S and metabolomics analysis. Life Sci, 2021, 264: 118616.
|
| 11. |
Zhou A, Lei Y, Tang L, et al. Gut microbiota: The emerging link to lung homeostasis and disease. J Bacteriol, 2021, 203(4): e00454-420.
|
| 12. |
Budden KF, Gellatly SL, Wood DL, et al. Emerging pathogenic links between microbiota and the gut-lung axis. Nat Rev Microbiol, 2017, 15(1): 55-63.
|
| 13. |
Bird L. Gut microbiota influences liver disease. Nat Rev Immunol, 2012, 12(3): 153.
|
| 14. |
Smith GD, Ebrahim S. 'Mendelian randomization': Can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol, 2003, 32(1): 1-22.
|
| 15. |
Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med, 2008, 27(8): 1133-1163.
|
| 16. |
Weith M, Beyer A. The next step in Mendelian randomization. Elife, 2023, 12: e86416.
|
| 17. |
Shi H, Zhao T, Geng R, et al. The associations between gut microbiota and chronic respiratory diseases: A Mendelian randomization study. Front Microbiol, 2023, 14: 1200937.
|
| 18. |
馬瑋瑋, 陳虹谷, 李彤彤, 等. 基于孟德爾隨機化分析腸道菌群與骨密度的因果關系. 中國骨質疏松雜志. 2023, 29(12): 1780-1785.
|
| 19. |
Chen J, Ruan X, Yuan S, et al. Antioxidants, minerals and vitamins in relation to Crohn's disease and ulcerative colitis: A Mendelian randomization study. Aliment Pharmacol Ther, 2023, 57(4): 399-408.
|
| 20. |
Reynolds CJ, Del Greco MF, Allen RJ, et al. The causal relationship between gastro-oesophageal reflux disease and idiopathic pulmonary fibrosis: A bidirectional two-sample Mendelian randomisation study. Eur Respir J, 2023, 61(5): 2201585.
|
| 21. |
Zhao W, Wang L, Wang Y, et al. Injured endothelial cell: A risk factor for pulmonary fibrosis. Int J Mol Sci, 2023, 24(10): 8749.
|
| 22. |
Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet, 2021, 53(2): 156-165.
|
| 23. |
Zhou CC, Pang Y, He Y, et al. A Mendelian randomization study of depression and risk of breast cancer. Chin Ment Health J, 2023, 37(6): 471-478.
|
| 24. |
Desbonnet L, Garrett L, Clarke G, et al. Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neurosci, 2010, 170(4): 1179-1188.
|
| 25. |
Groeger D, O'Mahony L, Murphy EF, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes, 2013, 4(4): 325-339.
|
| 26. |
Wu X, Wei X, Li X, et al. Diversity of fungi and bacteria in bronchoalveolar lavage fluid during development of chronic obstructive pulmonary disease. Jpn J Infect Dis, 2022, 75(6): 560-568.
|
| 27. |
Marimón JM, Sorarrain A, Ercibengoa M, et al. Lung microbiome on admission in critically ill patients with acute bacterial and viral pneumonia. Sci Rep, 2023, 13(1): 17724.
|
| 28. |
Alghetaa H, Mohammed A, Zhou J, et al. Resveratrol-mediated attenuation of superantigen-driven acute respiratory distress syndrome is mediated by microbiota in the lungs and gut. Pharmacol Res, 2021, 167: 105548.
|
| 29. |
Man MA, Ungur RA, Motoc NS, et al. Lung microbiota in idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, and unclassified interstitial lung diseases: A preliminary pilot study. Diagnostics (Basel), 2023, 13(19): 3157.
|
| 30. |
Ramphal W, Raaijmakers NJ, van der Klift M, et al. Mycotic aneurysm caused by Clostridium septicum in a patient with colorectal cancer. Infection, 2018, 46(5): 711-716.
|
| 31. |
Macha K, Giede-Jeppe A, Lücking H, et al. Ischaemic stroke and Clostridium septicum sepsis and meningitis in a patient with occult colon carcinoma: A case report and review of the literature. BMC Neurol, 2016, 16(1): 239.
|
| 32. |
Giannos P, Prokopidis K. Gut dysbiosis and long COVID-19: Feeling gutted. J Med Virol, 2022, 94(7): 2917-2918.
|
| 33. |
Liu Z, Peng Y, Zhao L, et al. MFE40-the active fraction of Mume Fructus alcohol extract-alleviates Crohn's disease and its complications. J Ethnopharmacol, 2022, 296: 115465.
|
| 34. |
任清林, 何文博, 岳佳瑞, 等. 兩樣本孟德爾隨機化分析腸道菌群與肺癌的因果關系. 中國胸心血管外科臨床雜志, 2023, 30(11): 1618-1627.
|
| 35. |
Yumoto H, Hirota K, Hirao K, et al. The pathogenic factors from oral streptococci for systemic diseases. Int J Mol Sci, 2019, 20(18): 4571.
|
| 36. |
王文浩. 基于高通量測序技術分析手術對食管鱗癌患者腸道菌群的影響. 河南大學, 2023.
|
| 37. |
趙勇, 鄒倩, 夏方妹, 等. 基于16S rDNA測序的自身免疫性甲狀腺疾病患者腸道菌群研究. 中國微生態學雜志, 2023, 35(7): 765-771,777.
|
| 38. |
Haruta I, Kikuchi K, Hashimoto E, et al. A possible role of histone-like DNA-binding protein of Streptococcus intermedius in the pathogenesis of bile duct damage in primary biliary cirrhosis. Clin Immunol, 2008, 127(2): 245-251.
|
| 39. |
Pichavant M, Sharan R, Le Rouzic O, et al. IL-22 defect during streptococcus pneumoniae infection triggers exacerbation of chronic obstructive pulmonary disease. EBioMedicine, 2015, 2(11): 1686-1696.
|
| 40. |
Yu L, Hong Y, Maishi N, et al. Oral bacterium Streptococcus mutans promotes tumor metastasis through thrombosis formation. Cancer Sci, 2024, 115(2): 648-659.
|
| 41. |
Yu L, Maishi N, Akahori E, et al. The oral bacterium Streptococcus mutans promotes tumor metastasis by inducing vascular inflammation. Cancer Sci, 2022, 113(11): 3980-3994.
|
| 42. |
Han MK, Zhou Y, Murray S, et al. Lung microbiome and disease progression in idiopathic pulmonary fibrosis: An analysis of the COMET study. Lancet Respir Med, 2014, 2(7): 548-556.
|
| 43. |
Knippenberg S, Ueberberg B, Maus R, et al. Streptococcus pneumoniae triggers progression of pulmonary fibrosis through pneumolysin. Thorax, 2015, 70(7): 636-646.
|
| 44. |
Kim H, Shin J, Kim S, et al. Bifidobacterium bifidum BGN4 and Bifidobacterium longum BORI promotes neuronal rejuvenation in aged mice. Biochem Biophys Res Commun, 2022, 603: 41-48.
|
| 45. |
Xia M, Xu Y, Li H, et al. Structural and functional alteration of the gut microbiota in elderly patients with hyperlipidemia. Front Cell Infect Microbiol, 2024, 14: 1333145.
|
| 46. |
Budden KF, Gellatly SL, Vaughan A, et al. Probiotic Bifidobacterium longum subsp. longum protects against cigarette smoke-induced inflammation in mice. Int J Mol Sci, 2022, 24(1): 252.
|
| 47. |
Duranti S, Vivo V, Zini I, et al. Bifidobacterium bifidum PRL2010 alleviates intestinal ischemia/reperfusion injury. PLoS One, 2018, 13(8): e0202670.
|
| 48. |
Chioma OS, Mallott EK, Chapman A, et al. Gut microbiota modulates lung fibrosis severity following acute lung injury in mice. Commun Biol, 2022, 5(1): 1401.
|
| 49. |
徐婷, 沈佳豪, 趙康, 等. 基于瘤胃球菌微生物群豐度構建疾病類型預測的腸道菌群標簽. 生物技術進展, 2024, 14(2): 323-330.
|
| 50. |
Aishwarya S, Gunasekaran K. Meta-analysis of the microbial biomarkers in the gut-lung crosstalk in COVID-19, community-acquired pneumonia and Clostridium difficile infections. Lett Appl Microbiol, 2022, 75(5): 1293-1306.
|
| 51. |
Liu JX, Yuan HY, Li YN, et al. Ephedra sinica polysaccharide alleviates airway inflammations of mouse asthma-like induced by PM2. 5 and ovalbumin via the regulation of gut microbiota and short chain fatty acid. J Pharm Pharmacol, 2022, 74(12): 1784-1796.
|
| 52. |
Wan Y, Wang S, Niu Y, et al. Effect of metformin on sepsis-associated acute lung injury and gut microbiota in aged rats with sepsis. Front Cell Infect Microbiol, 2023, 13: 1139436.
|
| 53. |
Wu Y, Chen Y, Li Q, et al. Tetrahydrocurcumin alleviates allergic airway inflammation in asthmatic mice by modulating the gut microbiota. Food Funct, 2021, 12(15): 6830-6840.
|
| 54. |
Sun M, Zhang F, Lu F, et al. Integrating fecal metabolomics and intestinal microbiota to study the mechanism of cannabidiol in the treatment of idiopathic pulmonary fibrosis. Front Pharmacol, 2024, 15: 1358626.
|
| 55. |
Ma S, You Y, Huang L, et al. Alterations in gut microbiota of gestational diabetes patients during the first trimester of pregnancy. Front Cell Infect Microbiol, 2020, 10: 58.
|
| 56. |
Guo W, Tang X, Zhang Q, et al. Mitigation of dextran-sodium-sulfate-induced colitis in mice through oral administration of microbiome-derived inosine and its underlying mechanisms. Int J Mol Sci, 2023, 24(18): 13852.
|
| 57. |
Wu W, Kaicen W, Bian X, et al. Akkermansia muciniphila alleviates high-fat-diet-related metabolic-associated fatty liver disease by modulating gut microbiota and bile acids. Microb Biotechnol, 2023, 16(10): 1924-1939.
|
| 58. |
Chiu YC, Lee SW, Liu CW, et al. Comprehensive profiling of the gut microbiota in patients with chronic obstructive pulmonary disease of varying severity. PLoS One, 2021, 16(4): e0249944.
|
| 59. |
Wang W, Zhang Y, Huang W, et al. Alamandine/MrgD axis prevents TGF-β1-mediated fibroblast activation via regulation of aerobic glycolysis and mitophagy. J Transl Med, 2023, 21(1): 24.
|
| 60. |
Suryadevara V, Ramchandran R, Kamp DW, et al. Lipid mediators regulate pulmonary fibrosis: Potential mechanisms and signaling pathways. Int J Mol Sci, 2020, 21(12): 4257.
|