| 1. |
鄭榮壽, 陳茹, 韓冰峰, 等. 2022年中國惡性腫瘤流行情況分析. 中華腫瘤雜志, 2024, 46(3): 221-231.Zheng RS, Chen R, Han BF, et al. Cancer incidence and mortality in China, 2022. Chin J Oncol, 2024, 46(3): 221-231.
|
| 2. |
NCCN. The NCCN clinical practice guidelines in oncology for non-small cell lung cancer (version 5.2024). Accessed on 2024-05-10.
|
| 3. |
中國臨床腫瘤學會指南工作委員會 . 中國臨床腫瘤學會指南工作委員會 . 中國臨床腫瘤學會 (CSCO) 非小細胞肺癌診療指南 2024. 北京: 人民衛生出版社, 2024. 6.Guidelines Working Committee of the CSCO. Chinese Society of Clinical Oncology (CSCO) Guidelines for the Diagnosis and Treatment of Non-small Cell Lung Cancer 2024. Beijing: People's Health Publishing House, 2024. 6.
|
| 4. |
中華醫學會呼吸病學分會, 中國肺癌防治聯盟專家組. 肺結節診治中國專家共識(2024年版). 中華結核和呼吸雜志, 2024, 47(8): 716-729.Chinese Thoracic Society, Chinese Medical Association. Chinese expert consensus on diagnosis and treatment of pulmonary nodules(2024). Chin J Tubercul Res Dis, 2024, 47(8): 716-729.
|
| 5. |
中國肺癌防治聯盟, 中華醫學會呼吸病學分會肺癌學組, 中國醫師協會呼吸醫師分會肺癌工作委員會. 肺癌篩查與管理中國專家共識. 國際呼吸雜志, 2019, 39(21): 1604-1615.China Lung Cancer Prevention and Control Alliance, The Lung Cancer Group of the Respiratory Disease Branch of the Chinese Medical Association, The Lung Cancer Working Committee of the Respiratory Physician Branch of the Chinese Medical Doctor Association. Chinese expert consensus on screening and management of lung cancer. Int J Respir, 2019, 39(21): 1604-1615.
|
| 6. |
de Margerie-Mellon C, Chassagnon G. Artificial intelligence: A critical review of applications for lung nodule and lung cancer. Diagn Interv Imaging, 2023, 104(1): 11-17.
|
| 7. |
Wang X, Peng Y, Lu L, et al. ChestX-ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. IEEE, 2017: 1-9.
|
| 8. |
Irvin JA, Rajpurkar P, Ko M, et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison: AAAI Conference on Artificial Intelligence, 2019.
|
| 9. |
Johnson AEW, Pollard TJ, Berkowitz SJ, et al. MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports. Sci Data, 2019, 6(1): 317.
|
| 10. |
Pehrson LM, Nielsen MB, Ammitzb?l Lauridsen C. Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI Database: A systematic review. Diagnostics (Basel), 2019, 9(1): 29.
|
| 11. |
Naseer I, Akram S, Masood T, et al. Performance analysis of state-of-the-art CNN Architectures for LUNA16. Sensors (Basel), 2022, 22(12): 4426.
|
| 12. |
Yan K, Wang X, Lu L, et al. DeepLesion: Automated mining of large-scale lesion annotations and universal lesion detection with deep learning. J Med Imaging (Bellingham), 2018, 5(3): 036501.
|
| 13. |
Bustos A, Pertusa A, Salinas JM, et al. PadChest: A large chest X-ray image dataset with multi-label annotated reports. Med Image Anal, 2020, 66: 101797.
|
| 14. |
Nguyen HQ, Lam K, Le LT, et al. VinDr-CXR: An open dataset of chest X-rays with radiologist's annotations. Sci Data, 2022, 9(1): 429.
|
| 15. |
National lung screening trial research team. Lung cancer incidence and mortality with extended follow-up in the national lung screening trial. J Thorac Oncol, 2019, 14(10): 1732-1742.
|
| 16. |
Grove O, Berglund AE, Schabath MB, et al. Quantitative computed tomographic descriptors associate tumor shape complexity and intratumor heterogeneity with prognosis in lung adenocarcinoma. PLoS One, 2015, 10(3): e0118261.
|
| 17. |
Yang J, Veeraraghavan H, Armato SG, et al. Autosegmentation for thoracic radiation treatment planning: A grand challenge at AAPM 2017. Med Phys, 2018, 45(10): 4568-4581.
|
| 18. |
Swensen SJ, Silverstein MD, Ilstrup DM, et al. The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med, 1997, 157(8): 849-855.
|
| 19. |
Gould MK, Ananth L, Barnett PG. A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodulesn. Chest, 2021, 131(2): 383-388.
|
| 20. |
Chen K, Nie Y, Park S, et al. Development and validation of machine learning-based model for the prediction of malignancy in multiple pulmonary nodules: Analysis from multicentric cohorts. Clin Cancer Res, 2021, 27(8): 2255-2265.
|
| 21. |
Zhang M, Zhuo N, Guo Z, et al. Establishment of a mathematic model for predicting malignancy in solitary pulmonary nodules. J Thorac Dis, 2015, 7(10): 1833-1841.
|
| 22. |
Yang D, Zhang X, Powell CA, et al. Probability of cancer in high-risk patients predicted by the protein-based lung cancer biomarker panel in China: LCBP study. Cancer, 2018, 124(2): 262-270.
|
| 23. |
Liu HY, Zhao XR, Chi M, et al. Risk assessment of malignancy in solitary pulmonary nodules in lung computed tomography: A multivariable predictive model study. Chin Med J (Engl), 2021, 134(14): 1687-1694.
|
| 24. |
蔣捷, 劉鋒, 王波, 等. CT聯合腫瘤標志物預測肺結節低分化腺癌的模型構建. 中國胸心血管外科臨床雜志, 2025, 32(1): 73-79.Jiang J, Liu F, Wang B, et al. Construction of a predictive model for poorly differentiated adenocarcinoma in pulmonary nodules using CT combined with tumor markers. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(1): 73-79.
|
| 25. |
Chung K, Mets OM, Gerke PK, et al. Brock malignancy risk calculator for pulmonary nodules: Validation outside a lung cancer screening population. Thorax, 2018, 73(9): 857-863.
|
| 26. |
丁輝, 胡傳賢, 黃蘇, 等. 基于CT和18F-FDGPET/CT的肺癌風險預測模型對肺結節惡性風險的驗證研究. 國際放射醫學核醫學雜志, 2019, 43(1): 17-21.Ding H, Hu CX, Huang S, et al. Verification of malignant risk of pulmonary nodules based on CT and 18F-FDG PET/CT prediction model. Intern J Rad Med Nuclear Med, 2019, 43(1): 17-21.
|
| 27. |
van Leeuwen KG, Schalekamp S, Rutten MJCM, et al. Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. Eur Radiol, 2021, 31(6): 3797-3804.
|
| 28. |
Milam ME, Koo CW. The current status and future of FDA-approved artificial intelligence tools in chest radiology in the United States. Clin Radiol, 2023, 78(2): 115-122.
|
| 29. |
Homayounieh F, Digumarthy S, Ebrahimian S, et al. An artificial intelligence-based chest X-ray model on human nodule detection accuracy from a multicenter study. JAMA Netw Open, 2021, 4(12): e2141096.
|
| 30. |
van Leeuwen KG, Schalekamp S, Rutten MJCM, et al. Comparison of commercial AI software performance for radiograph lung nodule detection and bone age prediction. Radiology, 2024, 310(1): e230981.
|
| 31. |
王亮, 許迪, 孫丹丹, 等. 人工智能輔助軟件可提升疲勞狀態下放射科規培醫師對肺結節的檢測效能. 放射學實踐, 2021, 36(4): 475-479.Wang L, Xu D, Sun DD, et al. Study on the effect of AI-assisted software on the detection efficiency of pulmonary nodules in fatigued radiological residents in standardized training. Radiologic Practice, 2021, 36(4): 475-479.
|
| 32. |
蔡少輝, 林巧娟, 楊樹木, 等. CT與AI肺結節診斷系統對診斷肺結節及鑒別分型的臨床價值. 醫療裝備, 2024, 37(5): 30-33.Cai SH, Lin QJ, Yang SM, et al. Clinical value of CT and AI pulmonary nodule diagnosis system in diagnosis and differential classification of pulmonary nodule. Med Equip, 2024, 37(5): 30-33.
|
| 33. |
邢宇彤, 劉建成, 孫百臣, 等. 區域醫療中心人工智能輔助診斷肺結節的臨床應用. 中國胸心血管外科臨床雜志, 2021, 28(10): 1178-1182.Xing YT, Liu JC, Sun BC, et al. Clinical application of artificial intelligence to lung nodules diagnosis in regional medical center. Chin J Clin Thorac Cardiovasc Surg, 2021, 28(10): 1178-1182.
|
| 34. |
張瀟文, 朱曉雷, 劉鴻鳴, 等. 多學科診療團隊模式下的肺癌診療一體化. 中國胸心血管外科臨床雜志, 2022, 29(7): 806-811.Zhang XW, Zhu XL, Liu HM, et al. Integration of diagnosis and treatment of pulmonary nodules under multidisciplinary treatment mode. Chin J Clin Thorac Cardiovasc Surg, 2022, 29(7): 806-811.
|
| 35. |
葉文衛, 劉碧華, 郭天暢. 基于深度學習人工智能在肺結節定性診斷中的臨床應用研究. 影像研究與醫學應用, 2024, 8(3): 8-10, 16.Ye WW, Liu BH, Guo TC. Clinical application of deep learning artificial intelligence in qualitative diagnosis of pulmonary nodules. J Imaging Res Med Appl, 2024, 8(3): 8-10, 16.
|
| 36. |
李斌, 劉永波, 崔龑, 等. 人工智能影像輔助診斷系統閱片在鑒別肺結節性質中的價值分析. 現代醫學與健康研究電子雜志, 2024, 8(4): 110-113.Li B, Liu YB, Cui Y, et al. Value analysis of film reading by artificial intelligence image-assisted diagnosis system in distinguishing pulmonary nodule properties. Mod Med Health Res Electron J, 2024, 8(4): 110-113.
|
| 37. |
Han Y, Qi H, Wang L, et al. Pulmonary nodules detection assistant platform: An effective computer aided system for early pulmonary nodules detection in physical examination. Comput Methods Programs Biomed, 2022, 217: 106680.
|
| 38. |
Goncalves S, Fong PC, Blokhina M. Artificial intelligence for early diagnosis of lung cancer through incidental nodule detection in low- and middle-income countries-acceleration during the COVID-19 pandemic but here to stay. Am J Cancer Res, 2022, 12(1): 1-16.
|
| 39. |
Salman R, Nguyen HN, Sher AC, et al. Diagnostic performance of artificial intelligence for pediatric pulmonary nodule detection in computed tomography of the chest. Clin Imaging, 2023, 101: 50-55.
|
| 40. |
Wu MY, Li Y, Fu BJ, et al. Evaluate the performance of four artificial intelligence-aided diagnostic systems in identifying and measuring four types of pulmonary nodules. J Appl Clin Med Phys, 2021, 22(1): 318-326.
|
| 41. |
董來東, 黃果. 基于CT影像的人工智能輔助診斷系統對4 771例肺癌診斷價值的系統評價與Meta分析. 中國胸心血管外科臨床雜志, 2021, 28(10): 1183-1191.Dong LD, Huan G. Diagnostic value of artificial intelligence-assisted diagnostic system for pulmonary cancer based on CT images: A systematic review and meta-analysis of 4 771 patients. Chin J Clin Thorac Cardiovasc Surg, 2021, 28(10): 1183-1191.
|
| 42. |
Liu JA, Yang IY, Tsai EB. Artificial intelligence (AI) for lung nodules, from the AJR special series on AI applications. AJR Am J Roentgenol, 2022, 219(5): 703-712.
|
| 43. |
Pereira CS, Rocha J, Campilho A, et al. Lightweight multi-scale classification of chest radiographs via size-specific batch normalization. Comput Methods Programs Biomed, 2023, 236: 107558.
|
| 44. |
劉強, 曾勇明, 孫靜坤, 等. 基于人工智能的CT肺結節檢出影響因素分析: 體模研究. CT理論與應用研究, 2024, 33(4): 471-477.Liu Q, Zeng YM, Sun JK, et al. Analysis of influencing factors on pulmonary nodule detection by computed tomography with artificial intelligence: A phantom study. Comput Tomogr Theory Appl, 2024, 33(4): 471-477.
|
| 45. |
Schwyzer M, Messerli M, Eberhard M, et al. Impact of dose reduction and iterative reconstruction algorithm on the detectability of pulmonary nodules by artificial intelligence. Diagn Interv Imaging, 2022, 103(5): 273-280.
|
| 46. |
Zhu X, Zhu L, Song D, et al. Comparison of single- and dual-energy CT combined with artificial intelligence for the diagnosis of pulmonary nodules. Clin Radiol, 2023, 78(2): e99-e105.
|
| 47. |
Zhang L, Shao Y, Chen G, et al. An artificial intelligence-assisted diagnostic system for the prediction of benignity and malignancy of pulmonary nodules and its practical value for patients with different clinical characteristics. Front Med (Lausanne), 2023, 10: 1286433.
|
| 48. |
楊倩, 陳長春, 劉玉林, 等. 肺部影像報告和數據系統2022版更新解讀. 中華放射學雜志, 2023, 57(9): 948-954.Yang Q, Chen CC, Liu YL, et al. Interpretation of update of lung CT screening reporting and data system version 2022. Chin J Radiol, 2023, 57(9): 948-954.
|
| 49. |
吳久純, 李甜, 李曉東, 等. 基于人工智能隨訪預測肺結節增長的影響因素研究. 中國全科醫學, 2022, 17(25): 2115-2120.Wu JC, Li T, Li XD, et al. Inflencing factors for pulmonary nodular growth predicted by artificial intelligence-based follow-up. Chin Gen Pract, 2022, 17(25): 2115-2120.
|
| 50. |
吳階平醫學基金會模擬醫學部胸外科專委會. 人工智能在肺結節診治中的應用專家共識(2022年版). 中國肺癌雜志, 2022, 25(4): 219-225.Thoracic Surgery Committee, Department of Simulated Medicine, Wu Jieping Medical Foundation. Chinese experts consensus on artificial intelligence assisted management for pulmonary nodule (2022 version). Chin J Lung Cancer , 2022, 25(4): 219-225.
|
| 51. |
黃文君, 李巧巧, 敬文斌, 等. 不同WHO肺癌病理分類下人工智能對肺結節良惡性的診斷效能. 臨床放射學雜志, 2025, 44(1): 76-82.Huang WJ, Li QQ, Jing WB, et al. Diagnostic performance of artificial intelligence on benign and malignant pulmonary nodules under different WHO Pathological classifications of lung cancer. J Clin Radiol, 2025, 44(1): 76-82.
|
| 52. |
Yuan H, Fan Z, Wu Y, et al. An efficient multi-path 3D convolutional neural network for false-positive reduction of pulmonary nodule detection. Int J Comput Assist Radiol Surg, 2021, 16(12): 2269-2277.
|
| 53. |
Ardila D, Kiraly AP, Bharadwaj S, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med, 2019, 25(6): 954-961.
|
| 54. |
Venkadesh KV, Aleef TA, Scholten ET, et al. Prior CT improves deep learning for malignancy risk estimation of screening-detected pulmonary nodules. Radiol, 2023, 308(2): e223308.
|
| 55. |
Wu R, Liang C, Zhang J, et al. Multi-kernel driven 3D convolutional neural network for automated detection of lung nodules in chest CT scans. Biomed Opt Express, 2024, 15(2): 1195-1218.
|
| 56. |
Zhao Y, Wang Z, Liu X, et al. Pulmonary nodule detection based on multiscale feature fusion. Comput Math Methods Med, 2022, 2022: 8903037.
|
| 57. |
Chen Y, Hou X, Yang Y, et al. A novel deep learning model based on multi-scale and multi-view for detection of pulmonary nodules. J Digit Imaging, 2023, 36(2): 688-699.
|
| 58. |
Zhang X, Wu C, Zhang Y, et al. Knowledge-enhanced visual-language pre-training on chest radiology images. Nat Commun, 2023, 14(1): 4542.
|
| 59. |
Wang X, Gao M, Xie J, et al. Development, validation, and comparison of image-based, clinical feature-based and fusion artificial intelligence diagnostic models in differentiating benign and malignant pulmonary ground-glass nodules. Front Oncol, 2022, 12: 892890.
|
| 60. |
Gandhi Z, Gurram P, Amgai B, et al. Artificial intelligence and lung cancer: impact on improving patient outcomes. Cancers (Basel), 2023, 15(21): 5236.
|
| 61. |
Ding Y, Zhang J, Zhuang W, et al. Improving the efficiency of identifying malignant pulmonary nodules before surgery via a combination of artificial intelligence CT image recognition and serum autoantibodies. Eur Radiol, 2023, 33(5): 3092-3102.
|