| 1. |
Siegel RL, Kratzer TB, Giaquinto AN, et al. Cancer statistics, 2025. CA Cancer J Clin, 2025, 75(1): 10-45.
|
| 2. |
Han B, Zheng R, Zeng H, et al. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent, 2024, 4(1): 47-53.
|
| 3. |
Adams SJ, Stone E, Baldwin DR, et al. Lung cancer screening. Lancet, 2023, 401(10374): 390-408.
|
| 4. |
Truhn D, Loeffler CM, Muller-Franzes G, et al. Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4). J Pathol, 2024, 262(3): 310-319.
|
| 5. |
Hartung MP, Bickle IC, Gaillard F, et al. How to create a great radiology report. Radiographics, 2020, 40(6): 1658-1670.
|
| 6. |
Haskard Zolnierek KB, DiMatteo MR. Physician communication and patient adherence to treatment: a meta-analysis. Med Care, 2009, 47(8): 826-834.
|
| 7. |
Oben P. Understanding the patient experience: a conceptual framework. J Patient Exp, 2020, 7(6): 906-910.
|
| 8. |
McDonald HP, Garg AX, Haynes RB. Interventions to enhance patient adherence to medication prescriptions: scientific review. JAMA, 2002, 288(22): 2868-2879.
|
| 9. |
Thirunavukarasu AJ, Ting DSJ, Elangovan K, et al. Large language models in medicine. Nat Med, 2023, 29(8): 1930-1940.
|
| 10. |
Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge. Nature, 2023, 620(7972): 172-180.
|
| 11. |
Yang X, Zhang Y, Jiang J, et al. Harnessing GPT-4 for automated error detection in pathology reports: implications for oncology diagnostics. Digit Health, 2025, 11: 20552076251346703.
|
| 12. |
Kucukkaya A, Aktas Bajalan E, Moons P, et al. Equality, diversity, and inclusion in artificial intelligence-driven healthcare chatbots: addressing challenges and shaping strategies. Eur J Cardiovasc Nurs, 2025, 24(7): 1175-1181.
|
| 13. |
Zhi Z, Zhao J, Li Q, et al. Evolving perceptions and attitudes to adopting generative AI in professional settings: multicenter longitudinal qualitative study of senior Chinese hospital leaders. J Med Internet Res, 2025, 27: e75531.
|
| 14. |
Yang X, Xiao Y, Liu D, et al. Enhancing physician-patient communication in oncology using GPT-4 through simplified radiology reports: multicenter quantitative study. J Med Internet Res, 2025, 27: e63786.
|
| 15. |
Yang X, Xiao Y, Liu D, et al. Enhancing doctor-patient communication using large language models for pathology report interpretation. BMC Med Inform Decis Mak, 2025, 25(1): 36.
|
| 16. |
Prucker P, Bressem KK, Peeken J, et al. A prospective controlled trial of large language model-based simplification of oncologic CT reports for patients with cancer. Radiol, 2025, 317(2): e251844.
|
| 17. |
Yang X, Xiao Y, Liu D, et al. Cross-language transformation of free text into structured lobectomy surgical records from a multicenter study. Sci Rep, 2025, 15(1): 15417.
|
| 18. |
Sun Z, Ong H, Kennedy P, et al. Evaluating GPT-4 on impressions generation in radiology reports. Radiol, 2023, 307(5): e231259.
|
| 19. |
Ullah E, Parwani A, Baig MM, et al. Challenges and barriers of using large language models (LLM) such as ChatGPT for diagnostic medicine with a focus on digital pathology: a recent scoping review. Diagn Pathol, 2024, 19(1): 43.
|
| 20. |
Liu TL, Hetherington TC, Stephens C, et al. AI-powered clinical documentation and clinicians’ electronic health record experience: a nonrandomized clinical trial. JAMA Netw Open, 2024, 7(9): e2432460.
|
| 21. |
周小芹, 劉慧珍, 王婷, 等. 基于大語言模型的臨床預測模型研究報告指南(TRIPOD-LLM)解讀. 中國胸心血管外科臨床雜志, 2025, 32(7): 940-946.Zhou XQ, Liu HZ, Wang T, et al. Interpretation of the TRIPOD-LLM reporting guideline for studies using large language models. Chin J Clin Thorac Cardiovasc Surg, 2025, 32(7): 940-946.
|
| 22. |
Bhayana R. Chatbots and large language models in radiology: a practical primer for clinical and research applications. Radiol, 2024, 310(1): e232756.
|
| 23. |
Shah NH, Entwistle D, Pfeffer MA. Creation and adoption of large language models in medicine. JAMA, 2023, 330(9): 866-869.
|
| 24. |
Amin KS, Davis MA, Doshi R, et al. Accuracy of ChatGPT, google bard, and microsoft bing for simplifying radiology reports. Radiol, 2023, 309(2): e232561.
|
| 25. |
Zhou Y, Ong H, Kennedy P, et al. Evaluating GPT-4V (GPT-4 with vision) on detection of radiologic findings on chest radiographs. Radiol, 2024, 311(2): e233270.
|
| 26. |
Gertz RJ, Dratsch T, Bunck AC, et al. Potential of GPT-4 for detecting errors in radiology reports: implications for reporting accuracy. Radiol, 2024, 311(1): e232714.
|
| 27. |
Wang S, Zhu Y, Liu H, et al. Knowledge editing for large language models: a survey. ACM Comput Surv, 2024, 57(3): 1-37.
|
| 28. |
Ampel B, Yang CH, Hu J, et al. Large language models for conducting advanced text analytics information systems research. ACM Trans Manag Inf Syst, 2025, 16(1): 1-27.
|
| 29. |
Takagi S, Watari T, Erabi A, et al. Performance of GPT-3. 5 and GPT-4 on the Japanese medical licensing examination: comparison study. JMIR Med Educ, 2023, 9: e48002.
|
| 30. |
Adams LC, Truhn D, Busch F, et al. Leveraging GPT-4 for post hoc transformation of free-text radiology reports into structured reporting: a multilingual feasibility study. Radiol, 2023, 307(4): e230725.
|
| 31. |
Birkhauer J, Gaab J, Kossowsky J, et al. Trust in the health care professional and health outcome: a meta-analysis. PLoS One, 2017, 12(2): e0170988.
|