| 1. |
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science, 1997, 275(5302): 964-967.
|
| 2. |
白潔, 孟軍, 蔡澤民, 等. 高脂蛋白(a)的冠心病患者內皮祖細胞功能受損. 中國動脈硬化雜志, 2015, 23(4): 384-388.
|
| 3. |
Yu CG, Zhang N, Yuan SS, et al. Endothelial progenitor cells in diabetic microvascular complications: friends or foes. Stem Cells Int, 2016, 2016:1803989. doi: 10.1155/2016/1803989. Epub 2016 May 29.
|
| 4. |
Kang H, Ma X, Liu J, et al. High glucose-induced endothelial progenitor cell dysfunction. Diab Vasc Dis Res, 2017, 14(5): 381-394.
|
| 5. |
Li TB, Zhang YZ, Liu WQ, et al. Correlation between NADPH oxidase-mediated oxidative stress and dysfunction of endothelial progenitor cell in hyperlipidemic patients. Korean J Intern Med, 2017, doi: 10.3904/kjim.2016.140.[Epub ahead of print].
|
| 6. |
King TF, McDermott JH. Endothelial progenitor cells and cardiovascular disease. J Stem Cells, 2014, 9(2): 93-106.
|
| 7. |
徐竹, 諸葛啟釧, 黃李潔. 干細胞3D支架的研究進展. 中國生物工程雜志, 2017, 37(9): 112-117.
|
| 8. |
Mohyeldin A, Garzón-Muvdi T, Qui?ones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2): 150-161.
|
| 9. |
Hawkins KE, Sharp TV, McKay TR. The role of hypoxia in stem cell potency and differentiation. Regen Med, 2013, 8(6): 771-782.
|
| 10. |
王麗, 張會峰, 袁慧娟, 等. 大鼠骨髓內皮祖細胞的分離培養與鑒定. 中國組織工程研究, 2012, 16(10): 1733-1736.
|
| 11. |
湯文燕, 欒佐. 內皮祖細胞的生物學特性及其臨床應用前景. 中國生物工程雜志, 2016, 36(10): 86-93.
|
| 12. |
李詠雪, 陸曉, 勵建安. 循環內皮祖細胞與冠心病關系的Meta分析. 中國動脈硬化雜志, 2012, 20(7): 655-660.
|
| 13. |
李珊姍, 楊鏞. Galectin-3 對外周血內皮祖細胞源性血管內皮細胞增殖能力的影響. 中國普外基礎與臨床雜志, 2012, 19(7): 718-721.
|
| 14. |
Liao S, Luo C, Cao B, et al. Endothelial progenitor cells for ischemic stroke: update on basic research and application. Stem Cells Int, 2017, 2017: 2193432.
|
| 15. |
饒璇, 李元建. 內皮細胞損傷與修復的研究進展. 中國動脈硬化雜志, 2017, 25(5): 531-535.
|
| 16. |
周武. 內皮祖細胞的生物學性狀及其治療作用的研究進展. 東南大學學報(醫學版), 2014, 33(6): 783-787.
|
| 17. |
Morrone D, Felice F, Scatena C, et al. Role of circulating endothelial progenitor cells in the reparative mechanisms of stable ischemic myocardium. Int J Cardiol, 2017. pii: S0167-5273(16)32271-9. doi: 10.1016/j.ijcard.2017.05.070.[Epub ahead of print] .
|
| 18. |
Kawamoto A, Katayama M, Handa N, et al. Intramuscular transplantation of G-CSF-mobilized CD34+ cells in patients with critical limb ischemia: a phase Ⅰ/Ⅱa, multicenter, single-blinded, dose-escalation clinical trial. Stem Cells, 2009, 27(11): 2857-2864.
|
| 19. |
Tanaka R, Masuda H, Kato S, et al. Autologous G-CSF-mobilized peripheral blood CD34+ cell therapy for diabetic patients with chronic nonhealing ulcer. Cell Transplant, 2014, 23(2): 167-179.
|
| 20. |
谷涌泉, 郭連瑞, 張建, 等. 自體骨髓干細胞移植治療嚴重下肢缺血 1 例. 中國實用外科雜志, 2003, 23(11): 670.
|
| 21. |
谷涌泉, 張建, 齊立行, 等. 自體骨髓干細胞和外周血干細胞移植治療下肢缺血的對比研究. 中國修復重建外科雜志, 2007, 21(7): 675-678.
|
| 22. |
谷涌泉, 佟鑄, 郭連瑞. 干細胞移植治療下肢重度缺血. 中華普通外科學文獻(電子版), 2015, 9(1): 8-10.
|
| 23. |
Hou J, Wang L, Long H, et al. Hypoxia preconditioning promotes cardiac stem cell survival and cardiogenic differentiation in vitro involving activation of the HIF-1α/apelin/APJ axis. Stem Cell Res Ther, 2017, 8(1): 215.
|
| 24. |
Yu Y, Yin Y, Wu RX, et al. Hypoxia and low-dose inflammatory stimulus synergistically enhance bone marrow mesenchymal stem cell migration. Cell Prolif, 2017, 50(1). doi: 10.1111/cpr.12309.
|
| 25. |
Das SK, Yuan YF, Li MQ. An overview on current issues and challenges of endothelial progenitor cell-based neovascularization in patients with diabetic foot ulcer. Cell Reprogram, 2017, 19(2): 75-87.
|