| 1. |
Perez K, Safran H, Sikov W, et al. Complete neoadjuvant treatment for rectal cancer: The Brown University Oncology Group CONTRE Study. Am J Clin Oncol, 2017, 40(3): 283-287.
|
| 2. |
R?del C, Martus P, Papadoupolos T, et al. Prognostic significance of tumor regression after preoperative chemoradiotherapy for rectal cancer. J Clin Oncol, 2005, 23(34): 8688-8696.
|
| 3. |
Wen B, Zhang L, Wang C, et al. Prognostic significance of clinical and pathological stages on locally advanced rectal carcinoma after neoadjuvant chemoradiotherapy. Radiat Oncol, 2015, 10: 124.
|
| 4. |
Park IJ, You YN, Agarwal A, et al. Neoadjuvant treatment response as an early response indicator for patients with rectal cancer. J Clin Oncol, 2012, 30(15): 1770-1776.
|
| 5. |
Maas M, Beets-Tan RG, Lambregts DM, et al. Wait-and-see policy for clinical complete responders after chemoradiation for rectal cancer. J Clin Oncol, 2011, 29(35): 4633-4640.
|
| 6. |
Stipa F, Chessin DB, Shia J, et al. A pathologic complete response of rectal cancer to preoperative combined-modality therapy results in improved oncological outcome compared with those who achieve no downstaging on the basis of preoperative endorectal ultrasonography. Ann Surg Oncol, 2006, 13(8): 1047-1053.
|
| 7. |
Appelt AL, Pl?en J, Harling H, et al. High-dose chemoradiotherapy and watchful waiting for distal rectal cancer: a prospective observational study. Lancet Oncol, 2015, 16(8): 919-927.
|
| 8. |
Habr-Gama A, Gama-Rodrigues J, S?o Juli?o GP, et al. Local recurrence after complete clinical response and watch and wait in rectal cancer after neoadjuvant chemoradiation: impact of salvage therapy on local disease control. Int J Radiat Oncol Biol Phys, 2014, 88(4): 822-828.
|
| 9. |
Liu Z, Zhang XY, Shi YJ, et al. Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin Cancer Res, 2017, 23(23): 7253-7262.
|
| 10. |
Horvat N, Veeraraghavan H, Khan M, et al. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy. Radiology, 2018, 287(3): 833-843.
|
| 11. |
Cui Y, Yang X, Shi Z, et al. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Eur Radiol, 2019, 29(3): 1211-1220.
|
| 12. |
Giannini V, Mazzetti S, Bertotto I, et al. Predicting locally advanced rectal cancer response to neoadjuvant therapy with. Eur J Nucl Med Mol Imaging, 2019, 46(4): 878-888.
|
| 13. |
Bibault JE, Giraud P, Housset M, et al. Author correction: deep learning and radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer. Sci Rep, 2018, 8(1): 16914.
|
| 14. |
Nie K, Shi L, Chen Q, et al. Rectal cancer: assessment of neoadjuvant chemoradiation outcome based on radiomics of multiparametric MRI. Clin Cancer Res, 2016, 22(21): 5256-5264.
|
| 15. |
Meng Y, Zhang Y, Dong D, et al. Novel radiomic signature as a prognostic biomarker for locally advanced rectal cancer. J Magn Reson Imaging, 2018 Feb 13. doi: 10.1002/jmri.25968.
|
| 16. |
Lovinfosse P, Polus M, Van Daele D, et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur J Nucl Med Mol Imaging, 2018, 45(3): 365-375.
|
| 17. |
劉健博, 由屹先, 鄒雨恒, 等. 數據庫輔助研究: 結直腸癌新輔助治療的應用—基于 DACCA 的華西真實世界數據報道. 中國普外基礎與臨床雜志, 2019, 26(12): 1467-1475.
|
| 18. |
劉健博, 呂炘沂, 鄒雨恒, 等. 多周期新輔助化療聯合阿帕替尼對進展期直腸癌的療效評價: 基于 DACCA 數據庫的輔助研究. 中國普外基礎與臨床雜志, 2019, 26(6): 728-734.
|
| 19. |
Quinlan R. Introduction of decision trees. Machine Learning, 1986, 1: 84-100.
|
| 20. |
Han JW, Kamber M著; 范明, 孟小峰譯. 數據挖掘: 概念與技術. 第3版. 北京: 機械工業出版社, 2008.
|
| 21. |
Breiman L, Friedman J, Stone CJ, et al. Classification and regression trees. New York: Chapman and Hall, 1984.
|
| 22. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
| 23. |
于瑞璇, 何欣林, 張秋露, 等. 華西DACCA的輔助研究: 單獨的新輔助化療不會影響直腸癌術后近期的肛門功能. 中國普外基礎與臨床雜志, 2019, 26(5): 595-601.
|
| 24. |
Callender GG, Das P, Rodriguez-Bigas MA, et al. Local excision after preoperative chemoradiation results in an equivalent outcome to total mesorectal excision in selected patients with T3 rectal cancer. Ann Surg Oncol, 2010, 17(2): 441-447.
|
| 25. |
Belluco C, De Paoli A, Canzonieri V, et al. Long-term outcome of patients with complete pathologic response after neoadjuvant chemoradiation for cT3 rectal cancer: implications for local excision surgical strategies. Ann Surg Oncol, 2011, 18(13): 3686-3693.
|
| 26. |
王鳴飛, 張惠茅. 結直腸癌術前 N 分期的隨機森林預測模型的建立與驗證. 吉林大學, 2019.
|
| 27. |
薩莎. 結直腸癌術前 T 分期的隨機森林預測模型的建立與驗證. 吉林大學, 2018.
|
| 28. |
陳斌, 蘇一丹, 黃山. 基于 KM-SMOTE 和隨機森林的不平衡數據分類. 計算機技術與發展, 2015, 25(9): 17-21.
|
| 29. |
吳瓊, 李運田, 鄭獻衛. 面向非平衡訓練集分類的隨機森林算法優化. 工業控制計算機, 2013, 26(7): 89-90.
|
| 30. |
Das P, Skibber JM, et al. Predictors of tumor response and downstaging in patients who receive preoperative chemoradiation for rectal cancer. Cancer, 2007, 109(9): 1750-1755.
|
| 31. |
Yoon SM, Kim DY, Kim TH, et al. Clinical parameters predicting pathologic tumor response after preoperative chemoradiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys, 2007, 69(4): 1167-1172.
|
| 32. |
汪曉東, 劉健博, 李立. 數據庫建設第五部分?結直腸癌的腫瘤特征—模塊的設計(二). 中國普外基礎與臨床雜志, 優先出版. 2020-03-15.
|
| 33. |
孟閆凱, 周純武. 磁共振、影像組學在直腸癌新輔助放化療療效評估及預后中的應用. 北京協和醫學院, 2018.
|