| 1. |
Deltenre P, Valla DC. Ischemic cholangiopathy. Semin Liver Dis, 2008, 28(3): 235-246.
|
| 2. |
Paul SB, Gamanagatti S, Sreenivas V, et al. Trans-arterial chemoembolization (TACE) in patients with unresectable hepatocellular carcinoma: Experience from a tertiary care centre in India. Indian J Radiol Imaging, 2011, 21(2): 113-120.
|
| 3. |
Monier A, Guiu B, Duran R, et al. Liver and biliary damages following transarterial chemoembolization of hepatocellular carcinoma: comparison between drug-eluting beads and lipiodol emulsion. Eur Radiol, 2017, 27(4): 1431-1439.
|
| 4. |
戴欣, 耿小平. 缺血性膽管損傷的病因學研究進展. 中華普通外科雜志, 2012, 27(1): 79-81.
|
| 5. |
Nakada S, Allard MA, Lewin M, et al. Ischemic cholangiopathy following transcatheter arterial chemoembolization for recurrent hepatocellular carcinoma after hepatectomy: an underestimated and devastating complication. J Gastrointest Surg, 2020, 24(11): 2517-2525.
|
| 6. |
de Vries Y, von Meijenfeldt FA, Porte RJ. Post-transplant cholangiopathy: classification, pathogenesis, and preventive strategies. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(4 Pt B): 1507-1515.
|
| 7. |
Dhamija E, Paul SB, Gamanagatti SR, et al. Biliary complications of arterial chemoembolization of hepatocellular carcinoma. Diagn Interv Imaging, 2015, 96(11): 1169-1175.
|
| 8. |
蘭陽軍. 膽管血供與缺血性膽管損傷. 局解手術學雜志, 2003, 12(3): 231-233.
|
| 9. |
Guiu B, Deschamps F, Aho S, et al. Liver/biliary injuries following chemoembolisation of endocrine tumours and hepatocellular carcinoma: lipiodol vs drug-eluting beads. J Hepatol, 2012, 56(3): 609-617.
|
| 10. |
Aal AKA, Moawad S, Lune PV, et al. Survival outcomes of very small drug-eluting beads used in chemoembolization of unresectable hepatocellular carcinoma. J Vasc Interv Radiol, 2019, 30(9): 1325-1334.
|
| 11. |
Lucatelli P, Ginnani Corradini L, De Rubeis G, et al. Balloon-occluded transcatheter arterial chemoembolization (b-TACE) for hepatocellular carcinoma performed with polyethylene-glycol epirubicin-loaded drug-eluting embolics: safety and preliminary results. Cardiovasc Intervent Radiol, 2019, 42(6): 853-862.
|
| 12. |
Wang Q, Hodavance M, Ronald J, et al. Minimal risk of biliary tract complications, including hepatic abscess, after transarterial embolization for hepatocellular carcinoma using concentrated antibiotics mixed with particles. Cardiovasc Intervent Radiol, 2018, 41(9): 1391-1398.
|
| 13. |
Ren J, Lu MD, Zheng RQ, et al. Evaluation of the microcirculatory disturbance of biliary ischemia after liver transplantation with contrast-enhanced ultrasound: preliminary experience. Liver Transpl, 2009, 15(12): 1703-1708.
|
| 14. |
Gaudio E, Onori P, Pannarale L, et al. Hepatic microcirculation and peribiliary plexus in experimental biliary cirrhosis: a morphological study. Gastroenterology, 1996, 111(4): 1118-1124.
|
| 15. |
Alabdulghani F, Healy GM, Cantwell CP. Radiological findings in ischaemic cholangiopathy. Clin Radiol, 2020, 75(3): 161-168.
|
| 16. |
黃捷, 黃漢飛, 段鍵, 等. 肝移植缺血性膽管損傷的發生機制及其研究進展. 國際移植與血液凈化雜志, 2014, 12(1): 4-7.
|
| 17. |
Mancinelli R, Glaser S, Francis H, et al. Ischemia reperfusion of the hepatic artery induces the functional damage of large bile ducts by changes in the expression of angiogenic factors. Am J Physiol Gastrointest Liver Physiol, 2015, 309(11): G865-873.
|
| 18. |
Doctor RB, Dahl RH, Salter KD, et al. Reorganization of cholangiocyte membrane domains represents an early event in rat liver ischemia. Hepatology, 1999, 29(5): 1364-1374.
|
| 19. |
Keppler U, Moussavian MR, Jeanmonod P, et al. Neither isolated hepatic arterial clamping nor hepatic arterial ligation induce ischemic type biliary lesions in rats. Ann Transplant, 2016, 21: 649-659.
|
| 20. |
Op den Dries S, Sutton ME, Lisman T, et al. Protection of bile ducts in liver transplantation: looking beyond ischemia. Transplantation, 2011, 92(4): 373-379.
|
| 21. |
Wang R, Sheps JA, Liu L, et al. Hydrophilic bile acids prevent liver damage caused by lack of biliary phospholipid in Mdr2 -/- mice. J Lipid Res, 2019, 60(1): 85-97.
|
| 22. |
Engin A. Bile acid toxicity and protein kinases. Adv Exp Med Biol, 2021, 1275: 229-258.
|
| 23. |
Allen K, Jaeschke H, Copple BL. Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol, 2011, 178(1): 175-186.
|
| 24. |
Popov Y, Patsenker E, Fickert P, et al. Mdr2 (Abcb4)-/- mice spontaneously develop severe biliary fibrosis via massive dysregulation of pro- and antifibrogenic genes. J Hepatol, 2005, 43(6): 1045-1054.
|
| 25. |
Xia X, Francis H, Glaser S, et al. Bile acid interactions with cholangiocytes. World J Gastroenterol, 2006, 12(22): 3553-3563.
|
| 26. |
Fiorucci S, Rizzo G, Donini A, et al. Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol Med, 2007, 13(7): 298-309.
|
| 27. |
Khan AA, Chow EC, Porte RJ, et al. Expression and regulation of the bile acid transporter, OSTalpha-OSTbeta in rat and human intestine and liver. Biopharm Drug Dispos, 2009, 30(5): 241-258.
|
| 28. |
Zhang Y, Jackson JP, St Claire RL, et al. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes. Pharmacol Res Perspect, 2017, 5(4): e00329.
|
| 29. |
程龍. 移植肝膽管細胞膽汁酸轉運蛋白在膽管損傷中的作用實驗研究. 重慶: 第三軍醫大學, 2010.
|
| 30. |
Cheng L, Tian F, Tian F, et al. Repression of Farnesoid X receptor contributes to biliary injuries of liver grafts through disturbing cholangiocyte bile acid transport. Am J Transplant, 2013, 13(12): 3094-3102.
|
| 31. |
Hohenester S, Wenniger LM, Paulusma CC, et al. A biliary HCO3- umbrella constitutes a protective mechanism against bile acid-induced injury in human cholangiocytes. Hepatology, 2012, 55(1): 173-183.
|
| 32. |
Beuers U, Hohenester S, de Buy Wenniger LJ, et al. The biliary HCO3- umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology, 2010, 52(4): 1489-1496.
|
| 33. |
Sasaki M, Miyakoshi M, Sato Y, et al. Increased expression of mitochondrial proteins associated with autophagy in biliary epithelial lesions in primary biliary cirrhosis. Liver Int, 2013, 33(2): 312-320.
|
| 34. |
van Niekerk J, Kersten R, Beuers U. Role of bile acids and the biliary HCO3- umbrella in the pathogenesis of primary biliary cholangitis. Clin Liver Dis, 2018, 22(3): 457-479.
|
| 35. |
Maillette de Buy Wenniger LJ, Hohenester S, Maroni L, et al. The cholangiocyte glycocalyx stabilizes the ‘biliary HCO3 umbrella’: an integrated line of defense against toxic bile acids. Dig Dis, 2015, 33(3): 397-407.
|
| 36. |
Chen G, Wang S, Bie P, et al. Endogenous bile salts are associated with bile duct injury in the rat liver transplantation model. Transplantation, 2009, 87(3): 330-339.
|
| 37. |
Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J Gastroenterol, 2009, 15(14): 1677-1689.
|
| 38. |
Urbano J, Echevarria-Uraga JJ, Ciampi-Dopazo JJ, et al. Multicentre prospective study of drug-eluting bead chemoembolisation safety using tightly calibrated small microspheres in non-resectable hepatocellular carcinoma. Eur J Radiol, 2020, 126: 108966.
|
| 39. |
Duan XH, Li H, Ren JZ, et al. Hepatic arterial chemoembolization with arsenic trioxide eluting callispheres microspheres versus lipiodol emulsion: pharmacokinetics and intratumoral concentration in a rabbit liver tumor model. Cancer Manag Res, 2019, 11: 9979-9988.
|
| 40. |
Zhang S, Huang C, Li Z, et al. Comparison of pharmacokinetics and drug release in tissues after transarterial chemoembolization with doxorubicin using diverse lipiodol emulsions and CalliSpheres Beads in rabbit livers. Drug Deliv, 2017, 24(1): 1011-1017.
|
| 41. |
Hu HH, Chen DQ, Wang YN, et al. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact, 2018, 292: 76-83.
|
| 42. |
Dhar A, Ray A. The CCN family proteins in carcinogenesis. Exp Oncol, 2010, 32(1): 2-9.
|
| 43. |
George J, Tsutsumi M, Tsuchishima M. MMP-13 deletion decreases profibrogenic molecules and attenuates N-nitrosodimethylamine-induced liver injury and fibrosis in mice. J Cell Mol Med, 2017, 21(12): 3821-3835.
|
| 44. |
Kim J, Kang W, Kang SH, et al. Proline-rich tyrosine kinase 2 mediates transforming growth factor-beta-induced hepatic stellate cell activation and liver fibrosis. Sci Rep, 2020, 10(1): 21018.
|
| 45. |
盧家美, 張晶晶, 呂毅, 等. 二甲雙胍抑制大鼠膽管成纖維細胞膠原生成的分子信號機制. 南方醫科大學學報, 2020, 40(5): 640-646.
|
| 46. |
李立軍, 王向昱, 張普, 等. TGF-β1及CTGF在膽管缺血性損傷修復過程中的表達及意義. 肝膽胰外科雜志, 2011, 23(4): 336-339.
|