Citation: WANG Na, ZHOU Yong, LI Ka. Research progress on association of gut microbiota and postoperative gastrointestinal dysfunction in patients after abdominal surgery. CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY, 2022, 29(2): 248-254. doi: 10.7507/1007-9424.202104006 Copy
Copyright ? the editorial department of CHINESE JOURNAL OF BASES AND CLINICS IN GENERAL SURGERY of West China Medical Publisher. All rights reserved
| 1. | Chen RY, Kung VL, Das S, et al. Duodenal microbiota in stunted undernourished children with enteropathy. N Engl J Med, 2020, 383(4): 321-333. |
| 2. | Lindenbaum J, Kent TH, Sprinz H. Malabsorption and jejunitis in American Peace Corps volunteers in Pakistan. Ann Intern Med, 1966, 65(6): 1201-1209. |
| 3. | Tognini P. Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci, 2017, 11: 25. doi: 10.3389/fncel.2017.00025. |
| 4. | Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe, 2018, 23(6): 775-785. |
| 5. | 傅志泉, 朱鵬翀, 李清林, 等. 大承氣湯治療胃腸功能障礙的 Meta 分析. 中華中醫藥學刊, 2017, 35(1): 169-172. |
| 6. | 劉海亮, 周榮斌. 腸功能障礙的發病機制認識. 中國急救醫學, 2007, 27(10): 940-942. |
| 7. | 江志偉, 王剛. 延遲性術后腸麻痹的概念及防治策略. 山東大學學報(醫學版), 2020, 58(5): 1-5. |
| 8. | Gero D, Gié O, Hübner M, et al. Postoperative ileus: in search of an international consensus on definition, diagnosis, and treatment. Langenbecks Arch Surg, 2017, 402(1): 149-158. |
| 9. | 劉麗蕾, 王湘英. 重癥急性胰腺炎合并胃腸功能障礙的機制研究及診治現狀. 世界華人消化雜志, 2013, 21(34): 3828-3834. |
| 10. | Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, et al. Postoperative ileus and postoperative gastrointestinal tract dysfunction: pathogenic mechanisms and novel treatment strategies beyond colorectal enhanced recovery after surgery protocols. Front Pharmacol, 2020, 11: 583422. doi: 10.3389/fphar.2020.583422. |
| 11. | Farmer AD, Holt CB, Downes TJ, et al. Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol Hepatol, 2018, 3(3): 203-212. |
| 12. | Wiggins T. Benefits of laparoscopy in selected cases of small bowel obstruction. Lancet Gastroenterol Hepatol, 2019, 4(4): 257-259. |
| 13. | Smith K. Neurogastroenterology: ageing, ENS senescence and gastrointestinal motility. Nat Rev Gastroenterol Hepatol, 2014, 11(3): 141. doi: 10.1038/nrgastro.2014.12. |
| 14. | Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol, 2014, 11(10): 611-627. |
| 15. | Loughman A, Ponsonby AL, O’Hely M, et al. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 2020, 52: 102640. doi: 10.1016/j.ebiom.2020.102640. |
| 16. | Ma TT, Yu SY, Li Y, et al. Randomised clinical trial: an assessment of acupuncture on specific meridian or specific acupoint vs. sham acupuncture for treating functional dyspepsia. Aliment Pharmacol Ther, 2012, 35(5): 552-561. |
| 17. | Wang Y, Zhang Y, Jiang R. Early traditional Chinese medicine bundle therapy for the prevention of sepsis acute gastrointestinal injury in elderly patients with severe sepsis. Sci Rep, 2017, 7: 46015. doi: 10.1038/srep46015. |
| 18. | Zhu MF, Xing X, Lei S, et al. Electroacupuncture at bilateral zusanli points (ST36) protects intestinal mucosal immune barrier in sepsis. Evid Based Complement Alternat Med, 2015, 2015: 639412. doi: 10.1155/2015/639412. |
| 19. | Hansen CT, S?rensen M, M?ller C, et al. Effect of laxatives on gastrointestinal functional recovery in fast-track hysterectomy: a double-blind, placebo-controlled randomized study. Am J Obstet Gynecol, 2007, 196(4): 311.e1. doi: 10.1016/j.ajog.2006.10.902-7. |
| 20. | Vriesman MH, Koppen IJN, Camilleri M, et al. Management of functional constipation in children and adults. Nat Rev Gastroenterol Hepatol, 2020, 17(1): 21-39. |
| 21. | Gracie DJ, Hamlin PJ, Ford AC. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol, 2019, 4(8): 632-642. |
| 22. | Black CJ, Yuan Y, Selinger CP, et al. Efficacy of soluble fibre, antispasmodic drugs, and gut-brain neuromodulators in irritable bowel syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol, 2020, 5(2): 117-131. |
| 23. | Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS?) Society recommendations. Clin Nutr, 2012, 31(6): 783-800. |
| 24. | Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 89-105. |
| 25. | Yuan JH, Song LM, Liu Y, et al. The effects of hyperbaric oxygen therapy on pelvic radiation induced gastrointestinal complications (rectal bleeding, diarrhea, and pain): a meta-analysis. Front Oncol, 2020, 10: 390. doi: 10.3389/fonc.2020.00390. |
| 26. | Gupta N, Kumar A, Harish RK, et al. Comparison of postoperative analgesia and opioid requirement with thoracic epidural vs. continuous rectus sheath infusion in midline incision laparotomies under general anaesthesia—A prospective randomised controlled study. Indian J Anaesth, 2020, 64(9): 750-755. |
| 27. | 林璋, 祖先鵬, 謝海勝, 等. 腸道菌群與人體疾病發病機制的研究進展. 藥學學報, 2016, 51(6): 843-852. |
| 28. | Moeller AH, Li Y, Mpoudi Ngole E, et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA, 2014, 111(46): 16431-16435. |
| 29. | Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3): 337-340. |
| 30. | B?umler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535(7610): 85-93. |
| 31. | 肖鍶瑤, 張紓難. 腸道菌群和呼吸系統疾病相關性的研究進展. 中國全科醫學, 2021, 24(9): 1165-1172. |
| 32. | Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress, 2017, 7: 124-136. |
| 33. | Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65. |
| 34. | Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell, 2014, 159(4): 789-799. |
| 35. | Zhang W, Qu W, Wang H, et al. Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Transl Psychiatry, 2021, 11(1): 131. doi: 10.1038/s41398-021-01254-5. |
| 36. | Zhang Z, Tang H, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther, 2019, 4: 41. doi: 10.1038/s41392-019-0074-5. |
| 37. | Pluznick JL. The gut microbiota in kidney disease. Science, 2020, 369(6510): 1426-1427. |
| 38. | Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 2013, 18(6): 666-673. |
| 39. | 陳堅, 邱志兵, 羅忠光, 等. 腸易激綜合征患者 50 例的小腸細菌過度生長和低度炎癥反應. 中華消化雜志, 2018, 38(11): 769-773. |
| 40. | 胡水清, 張玫. 小腸細菌過度生長與腸易激綜合征相關性的研究進展. 重慶醫學, 2015, 44(16): 2282-2284. |
| 41. | Saffouri GB, Shields-Cutler RR, Chen J, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun, 2019, 10(1): 2012. doi: 10.1038/s41467-019-09964-7. |
| 42. | Singh Y, Trautwein C, Dhariwal A, et al. DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Sci Rep, 2020, 10(1): 16131. doi: 10.1038/s41598-020-72903-w. |
| 43. | Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun, 2018, 9(1): 3294. doi: 10.1038/s41467-018-05470-4. |
| 44. | Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol, 2018, 8: 13. doi: 10.3389/fcimb.2018.00013. |
| 45. | 羅金燕. 5 羥色胺與胃腸運動及感知疾病—2005 年美國 DDW 巡禮. 中國實用內科雜志, 2006, 26(10): 723-724. |
| 46. | Kim SW, Kim S, Son M, et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep, 2020, 10(1): 2232. doi: 10.1038/s41598-020-59314-7. |
| 47. | Wang B, Zhu S, Liu Z, et al. Increased expression of colonic mucosal melatonin in patients with irritable bowel syndrome correlated with gut dysbiosis. Genom Proteom Bioinf, 2020, 18(6): 708-720. |
| 48. | 陳春球, 丁衛星, 李永渝. 褪黑素對胃腸運動的影響. 中國病理生理雜志, 2011, 27(11): 2185-2188. |
| 49. | 張磊, 劉芳娥, 胡文治, 等. 褪黑素對噪聲應激大鼠胃腸傳輸功能的影響及其機制. 世界華人消化雜志, 2008, 16(2): 208-211. |
| 50. | Hemati K, Pourhanifeh MH, Dehdashtian E, et al. Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol, 2021, 35(1): 25-39. |
| 51. | 丁亞萍, 許勤, 王建華, 等. 添加短鏈脂肪酸的 TPN 對術后化療大鼠結腸粘膜細胞增殖作用的研究. 實用臨床醫藥雜志, 2006, 10(9): 38-41. |
| 52. | 劉松珍, 張雁, 張名位, 等. 腸道短鏈脂肪酸產生機制及生理功能的研究進展. 廣東農業科學, 2013, 40(11): 99-103. |
| 53. | Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol, 2019, 10: 277. doi: 10.3389/fimmu.2019.00277. |
| 54. | Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478. |
| 55. | Aho VTE, Houser MC, Pereira PAB, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener, 2021, 16(1): 6. doi: 10.1186/s13024-021-00427-6. |
| 56. | Gill PA, van Zelm MC, Muir JG, et al. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther, 2018, 48(1): 15-34. |
| 57. | 趙心宇, 趙春艷, 孟秀香, 等. 丁酸類衍生物抗腫瘤作用機制的研究進展. 中國老年學雜志, 2007, 27(5): 495-496. |
| 58. | 徐仁應, 卞玉海, 萬燕萍, 等. 短鏈脂肪酸與結直腸腫瘤細胞凋亡關系的研究. 腸外與腸內營養, 2013, 20(5): 259-262. |
| 59. | Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol, 2013, 229(2): 323-331. |
| 60. | Jain U, Lai CW, Xiong S, et al. Temporal regulation of the bacterial metabolite deoxycholate during colonic repair is critical for crypt regeneration. Cell Host Microbe, 2018, 24(3): 353-363. |
| 61. | Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med, 2019, 25(4): 679-689. |
| 62. | Haffke M, Fehlmann D, Rummel G, et al. Structural basis of species-selective antagonist binding to the succinate receptor. Nature, 2019, 574(7779): 581-585. |
| 63. | De Vadder F, Kovatcheva-Datchary P, Zitoun C, et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab, 2016, 24(1): 151-157. |
| 64. | Mills EL, Pierce KA, Jedrychowski MP, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560(7716): 102-106. |
| 65. | Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity, 2018, 49(1): 33-41. |
| 66. | Haraguchi T, Kayashima T, Okazaki Y, et al. Cecal succinate elevated by some dietary polyphenols may inhibit colon cancer cell proliferation and angiogenesis. J Agric Food Chem, 2014, 62(24): 5589-5594. |
| 67. | Macias-Ceja DC, Ortiz-Masiá D, Salvador P, et al. Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol, 2019, 12(1): 178-187. |
| 68. | Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444): 238-242. |
| 69. | Mills E, O’Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol, 2014, 24(5): 313-320. |
| 70. | 呂燕華, 梁劍平, 張丹丹, 等. 琥珀酸鹽受體介導 Foxm1 表達促進肺纖維化. 重慶醫科大學學報, 2021, 46(2): 206-211. |
| 71. | Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2): 457-470. |
| 72. | Garrote GL, Abraham AG, Rumbo M. Is lactate an undervalued functional component of fermented food products? Front Microbiol, 2015, 6: 629. doi: 10.3389/fmicb.2015.00629. |
| 73. | Kakisu E, Abraham AG, Farinati CT, et al. Lactobacillus plantarum isolated from Kefir protects Vero cells from cytotoxicity by type-Ⅱ shiga toxin from Escherichia coli O157:H7. J Dairy Res, 2013, 80(1): 64-71. |
| 74. | Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus Kefir carrying S-layer protein against Salmonella enterica serovar enteritidis. Int J Food Microbiol, 2007, 118(3): 264-273. |
| 75. | Lee YS, Kim TY, Kim Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe, 2018, 24(6): 833-846. |
| 76. | 張峻嶺. 精準醫療背景下進展期胃癌抗血管靶向治療的現狀與挑戰. 中國腫瘤生物治療雜志, 2020, 27(7): 825-829. |
| 77. | Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med, 2015, 372(9): 793-795. |
| 78. | Precision medicine gets an edge. EBioMedicine, 2019, 50: 1-2. |
| 79. | 崔芳芳, 何賢英, 石金銘, 等. 臨床醫師精準醫療知信行現狀及影響因素調查分析. 醫學研究生學報, 2021, 34(3): 282-286. |
| 80. | Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. N Engl J Med, 2015, 372(23): 2229-2234. |
| 81. | Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018, 15(10): 599-616. |
| 82. | Zeggini E, Gloyn AL, Barton AC, et al. Translational genomics and precision medicine: moving from the lab to the clinic. Science, 2019, 365(6460): 1409-1413. |
| 83. | Wise AL, Manolio TA, Mensah GA, et al. Genomic medicine for undiagnosed diseases. Lancet, 2019, 394(10197): 533-540. |
| 84. | Freedman SB, Williamson-Urquhart S, Farion KJ, et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med, 2018, 379(21): 2015-2026. |
| 85. | 張哲瑞, 陳鳳容. 糞菌移植在臨床應用中的研究進展. 醫學研究生學報, 2020, 33(4): 428-432. |
| 86. | Aziz I, Palsson OS, T?rnblom H, et al. Epidemiology, clinical characteristics, and associations for symptom-based Rome Ⅳ functional dyspepsia in adults in the USA, Canada, and the UK: a cross-sectional population-based study. Lancet Gastroenterol Hepatol, 2018, 3(4): 252-262. |
| 87. | Niesler B, Kuerten S, Demir IE, et al. Disorders of the enteric nervous system—a holistic view. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 393-410. |
- 1. Chen RY, Kung VL, Das S, et al. Duodenal microbiota in stunted undernourished children with enteropathy. N Engl J Med, 2020, 383(4): 321-333.
- 2. Lindenbaum J, Kent TH, Sprinz H. Malabsorption and jejunitis in American Peace Corps volunteers in Pakistan. Ann Intern Med, 1966, 65(6): 1201-1209.
- 3. Tognini P. Gut microbiota: a potential regulator of neurodevelopment. Front Cell Neurosci, 2017, 11: 25. doi: 10.3389/fncel.2017.00025.
- 4. Bhattarai Y, Williams BB, Battaglioli EJ, et al. Gut microbiota-produced tryptamine activates an epithelial G-protein-coupled receptor to increase colonic secretion. Cell Host Microbe, 2018, 23(6): 775-785.
- 5. 傅志泉, 朱鵬翀, 李清林, 等. 大承氣湯治療胃腸功能障礙的 Meta 分析. 中華中醫藥學刊, 2017, 35(1): 169-172.
- 6. 劉海亮, 周榮斌. 腸功能障礙的發病機制認識. 中國急救醫學, 2007, 27(10): 940-942.
- 7. 江志偉, 王剛. 延遲性術后腸麻痹的概念及防治策略. 山東大學學報(醫學版), 2020, 58(5): 1-5.
- 8. Gero D, Gié O, Hübner M, et al. Postoperative ileus: in search of an international consensus on definition, diagnosis, and treatment. Langenbecks Arch Surg, 2017, 402(1): 149-158.
- 9. 劉麗蕾, 王湘英. 重癥急性胰腺炎合并胃腸功能障礙的機制研究及診治現狀. 世界華人消化雜志, 2013, 21(34): 3828-3834.
- 10. Mazzotta E, Villalobos-Hernandez EC, Fiorda-Diaz J, et al. Postoperative ileus and postoperative gastrointestinal tract dysfunction: pathogenic mechanisms and novel treatment strategies beyond colorectal enhanced recovery after surgery protocols. Front Pharmacol, 2020, 11: 583422. doi: 10.3389/fphar.2020.583422.
- 11. Farmer AD, Holt CB, Downes TJ, et al. Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol Hepatol, 2018, 3(3): 203-212.
- 12. Wiggins T. Benefits of laparoscopy in selected cases of small bowel obstruction. Lancet Gastroenterol Hepatol, 2019, 4(4): 257-259.
- 13. Smith K. Neurogastroenterology: ageing, ENS senescence and gastrointestinal motility. Nat Rev Gastroenterol Hepatol, 2014, 11(3): 141. doi: 10.1038/nrgastro.2014.12.
- 14. Brierley SM, Linden DR. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat Rev Gastroenterol Hepatol, 2014, 11(10): 611-627.
- 15. Loughman A, Ponsonby AL, O’Hely M, et al. Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 2020, 52: 102640. doi: 10.1016/j.ebiom.2020.102640.
- 16. Ma TT, Yu SY, Li Y, et al. Randomised clinical trial: an assessment of acupuncture on specific meridian or specific acupoint vs. sham acupuncture for treating functional dyspepsia. Aliment Pharmacol Ther, 2012, 35(5): 552-561.
- 17. Wang Y, Zhang Y, Jiang R. Early traditional Chinese medicine bundle therapy for the prevention of sepsis acute gastrointestinal injury in elderly patients with severe sepsis. Sci Rep, 2017, 7: 46015. doi: 10.1038/srep46015.
- 18. Zhu MF, Xing X, Lei S, et al. Electroacupuncture at bilateral zusanli points (ST36) protects intestinal mucosal immune barrier in sepsis. Evid Based Complement Alternat Med, 2015, 2015: 639412. doi: 10.1155/2015/639412.
- 19. Hansen CT, S?rensen M, M?ller C, et al. Effect of laxatives on gastrointestinal functional recovery in fast-track hysterectomy: a double-blind, placebo-controlled randomized study. Am J Obstet Gynecol, 2007, 196(4): 311.e1. doi: 10.1016/j.ajog.2006.10.902-7.
- 20. Vriesman MH, Koppen IJN, Camilleri M, et al. Management of functional constipation in children and adults. Nat Rev Gastroenterol Hepatol, 2020, 17(1): 21-39.
- 21. Gracie DJ, Hamlin PJ, Ford AC. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol Hepatol, 2019, 4(8): 632-642.
- 22. Black CJ, Yuan Y, Selinger CP, et al. Efficacy of soluble fibre, antispasmodic drugs, and gut-brain neuromodulators in irritable bowel syndrome: a systematic review and network meta-analysis. Lancet Gastroenterol Hepatol, 2020, 5(2): 117-131.
- 23. Gustafsson UO, Scott MJ, Schwenk W, et al. Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS?) Society recommendations. Clin Nutr, 2012, 31(6): 783-800.
- 24. Payne SC, Furness JB, Stebbing MJ. Bioelectric neuromodulation for gastrointestinal disorders: effectiveness and mechanisms. Nat Rev Gastroenterol Hepatol, 2019, 16(2): 89-105.
- 25. Yuan JH, Song LM, Liu Y, et al. The effects of hyperbaric oxygen therapy on pelvic radiation induced gastrointestinal complications (rectal bleeding, diarrhea, and pain): a meta-analysis. Front Oncol, 2020, 10: 390. doi: 10.3389/fonc.2020.00390.
- 26. Gupta N, Kumar A, Harish RK, et al. Comparison of postoperative analgesia and opioid requirement with thoracic epidural vs. continuous rectus sheath infusion in midline incision laparotomies under general anaesthesia—A prospective randomised controlled study. Indian J Anaesth, 2020, 64(9): 750-755.
- 27. 林璋, 祖先鵬, 謝海勝, 等. 腸道菌群與人體疾病發病機制的研究進展. 藥學學報, 2016, 51(6): 843-852.
- 28. Moeller AH, Li Y, Mpoudi Ngole E, et al. Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci USA, 2014, 111(46): 16431-16435.
- 29. Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 2016, 164(3): 337-340.
- 30. B?umler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature, 2016, 535(7610): 85-93.
- 31. 肖鍶瑤, 張紓難. 腸道菌群和呼吸系統疾病相關性的研究進展. 中國全科醫學, 2021, 24(9): 1165-1172.
- 32. Foster JA, Rinaman L, Cryan JF. Stress & the gut-brain axis: regulation by the microbiome. Neurobiol Stress, 2017, 7: 124-136.
- 33. Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285): 59-65.
- 34. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell, 2014, 159(4): 789-799.
- 35. Zhang W, Qu W, Wang H, et al. Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress. Transl Psychiatry, 2021, 11(1): 131. doi: 10.1038/s41398-021-01254-5.
- 36. Zhang Z, Tang H, Chen P, et al. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther, 2019, 4: 41. doi: 10.1038/s41392-019-0074-5.
- 37. Pluznick JL. The gut microbiota in kidney disease. Science, 2020, 369(6510): 1426-1427.
- 38. Clarke G, Grenham S, Scully P, et al. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry, 2013, 18(6): 666-673.
- 39. 陳堅, 邱志兵, 羅忠光, 等. 腸易激綜合征患者 50 例的小腸細菌過度生長和低度炎癥反應. 中華消化雜志, 2018, 38(11): 769-773.
- 40. 胡水清, 張玫. 小腸細菌過度生長與腸易激綜合征相關性的研究進展. 重慶醫學, 2015, 44(16): 2282-2284.
- 41. Saffouri GB, Shields-Cutler RR, Chen J, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun, 2019, 10(1): 2012. doi: 10.1038/s41467-019-09964-7.
- 42. Singh Y, Trautwein C, Dhariwal A, et al. DJ-1 (Park7) affects the gut microbiome, metabolites and the development of innate lymphoid cells (ILCs). Sci Rep, 2020, 10(1): 16131. doi: 10.1038/s41598-020-72903-w.
- 43. Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun, 2018, 9(1): 3294. doi: 10.1038/s41467-018-05470-4.
- 44. Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol, 2018, 8: 13. doi: 10.3389/fcimb.2018.00013.
- 45. 羅金燕. 5 羥色胺與胃腸運動及感知疾病—2005 年美國 DDW 巡禮. 中國實用內科雜志, 2006, 26(10): 723-724.
- 46. Kim SW, Kim S, Son M, et al. Melatonin controls microbiota in colitis by goblet cell differentiation and antimicrobial peptide production through Toll-like receptor 4 signalling. Sci Rep, 2020, 10(1): 2232. doi: 10.1038/s41598-020-59314-7.
- 47. Wang B, Zhu S, Liu Z, et al. Increased expression of colonic mucosal melatonin in patients with irritable bowel syndrome correlated with gut dysbiosis. Genom Proteom Bioinf, 2020, 18(6): 708-720.
- 48. 陳春球, 丁衛星, 李永渝. 褪黑素對胃腸運動的影響. 中國病理生理雜志, 2011, 27(11): 2185-2188.
- 49. 張磊, 劉芳娥, 胡文治, 等. 褪黑素對噪聲應激大鼠胃腸傳輸功能的影響及其機制. 世界華人消化雜志, 2008, 16(2): 208-211.
- 50. Hemati K, Pourhanifeh MH, Dehdashtian E, et al. Melatonin and morphine: potential beneficial effects of co-use. Fundam Clin Pharmacol, 2021, 35(1): 25-39.
- 51. 丁亞萍, 許勤, 王建華, 等. 添加短鏈脂肪酸的 TPN 對術后化療大鼠結腸粘膜細胞增殖作用的研究. 實用臨床醫藥雜志, 2006, 10(9): 38-41.
- 52. 劉松珍, 張雁, 張名位, 等. 腸道短鏈脂肪酸產生機制及生理功能的研究進展. 廣東農業科學, 2013, 40(11): 99-103.
- 53. Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol, 2019, 10: 277. doi: 10.3389/fimmu.2019.00277.
- 54. Dalile B, Van Oudenhove L, Vervliet B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication. Nat Rev Gastroenterol Hepatol, 2019, 16(8): 461-478.
- 55. Aho VTE, Houser MC, Pereira PAB, et al. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol Neurodegener, 2021, 16(1): 6. doi: 10.1186/s13024-021-00427-6.
- 56. Gill PA, van Zelm MC, Muir JG, et al. Review article: short chain fatty acids as potential therapeutic agents in human gastrointestinal and inflammatory disorders. Aliment Pharmacol Ther, 2018, 48(1): 15-34.
- 57. 趙心宇, 趙春艷, 孟秀香, 等. 丁酸類衍生物抗腫瘤作用機制的研究進展. 中國老年學雜志, 2007, 27(5): 495-496.
- 58. 徐仁應, 卞玉海, 萬燕萍, 等. 短鏈脂肪酸與結直腸腫瘤細胞凋亡關系的研究. 腸外與腸內營養, 2013, 20(5): 259-262.
- 59. Scales BS, Huffnagle GB. The microbiome in wound repair and tissue fibrosis. J Pathol, 2013, 229(2): 323-331.
- 60. Jain U, Lai CW, Xiong S, et al. Temporal regulation of the bacterial metabolite deoxycholate during colonic repair is critical for crypt regeneration. Cell Host Microbe, 2018, 24(3): 353-363.
- 61. Wirbel J, Pyl PT, Kartal E, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med, 2019, 25(4): 679-689.
- 62. Haffke M, Fehlmann D, Rummel G, et al. Structural basis of species-selective antagonist binding to the succinate receptor. Nature, 2019, 574(7779): 581-585.
- 63. De Vadder F, Kovatcheva-Datchary P, Zitoun C, et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab, 2016, 24(1): 151-157.
- 64. Mills EL, Pierce KA, Jedrychowski MP, et al. Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature, 2018, 560(7716): 102-106.
- 65. Nadjsombati MS, McGinty JW, Lyons-Cohen MR, et al. Detection of succinate by intestinal tuft cells triggers a type 2 innate immune circuit. Immunity, 2018, 49(1): 33-41.
- 66. Haraguchi T, Kayashima T, Okazaki Y, et al. Cecal succinate elevated by some dietary polyphenols may inhibit colon cancer cell proliferation and angiogenesis. J Agric Food Chem, 2014, 62(24): 5589-5594.
- 67. Macias-Ceja DC, Ortiz-Masiá D, Salvador P, et al. Succinate receptor mediates intestinal inflammation and fibrosis. Mucosal Immunol, 2019, 12(1): 178-187.
- 68. Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature, 2013, 496(7444): 238-242.
- 69. Mills E, O’Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol, 2014, 24(5): 313-320.
- 70. 呂燕華, 梁劍平, 張丹丹, 等. 琥珀酸鹽受體介導 Foxm1 表達促進肺纖維化. 重慶醫科大學學報, 2021, 46(2): 206-211.
- 71. Mills EL, Kelly B, Logan A, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell, 2016, 167(2): 457-470.
- 72. Garrote GL, Abraham AG, Rumbo M. Is lactate an undervalued functional component of fermented food products? Front Microbiol, 2015, 6: 629. doi: 10.3389/fmicb.2015.00629.
- 73. Kakisu E, Abraham AG, Farinati CT, et al. Lactobacillus plantarum isolated from Kefir protects Vero cells from cytotoxicity by type-Ⅱ shiga toxin from Escherichia coli O157:H7. J Dairy Res, 2013, 80(1): 64-71.
- 74. Golowczyc MA, Mobili P, Garrote GL, et al. Protective action of Lactobacillus Kefir carrying S-layer protein against Salmonella enterica serovar enteritidis. Int J Food Microbiol, 2007, 118(3): 264-273.
- 75. Lee YS, Kim TY, Kim Y, et al. Microbiota-derived lactate accelerates intestinal stem-cell-mediated epithelial development. Cell Host Microbe, 2018, 24(6): 833-846.
- 76. 張峻嶺. 精準醫療背景下進展期胃癌抗血管靶向治療的現狀與挑戰. 中國腫瘤生物治療雜志, 2020, 27(7): 825-829.
- 77. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med, 2015, 372(9): 793-795.
- 78. Precision medicine gets an edge. EBioMedicine, 2019, 50: 1-2.
- 79. 崔芳芳, 何賢英, 石金銘, 等. 臨床醫師精準醫療知信行現狀及影響因素調查分析. 醫學研究生學報, 2021, 34(3): 282-286.
- 80. Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. N Engl J Med, 2015, 372(23): 2229-2234.
- 81. Llovet JM, Montal R, Sia D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat Rev Clin Oncol, 2018, 15(10): 599-616.
- 82. Zeggini E, Gloyn AL, Barton AC, et al. Translational genomics and precision medicine: moving from the lab to the clinic. Science, 2019, 365(6460): 1409-1413.
- 83. Wise AL, Manolio TA, Mensah GA, et al. Genomic medicine for undiagnosed diseases. Lancet, 2019, 394(10197): 533-540.
- 84. Freedman SB, Williamson-Urquhart S, Farion KJ, et al. Multicenter trial of a combination probiotic for children with gastroenteritis. N Engl J Med, 2018, 379(21): 2015-2026.
- 85. 張哲瑞, 陳鳳容. 糞菌移植在臨床應用中的研究進展. 醫學研究生學報, 2020, 33(4): 428-432.
- 86. Aziz I, Palsson OS, T?rnblom H, et al. Epidemiology, clinical characteristics, and associations for symptom-based Rome Ⅳ functional dyspepsia in adults in the USA, Canada, and the UK: a cross-sectional population-based study. Lancet Gastroenterol Hepatol, 2018, 3(4): 252-262.
- 87. Niesler B, Kuerten S, Demir IE, et al. Disorders of the enteric nervous system—a holistic view. Nat Rev Gastroenterol Hepatol, 2021, 18(6): 393-410.

