| 1. |
Van Cutsem E, Bang YJ, Feng-Yi F, et al. HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer, 2015, 18(3): 476-484.
|
| 2. |
《胃癌 HER2 檢測指南》編寫組. 胃癌 HER2 檢測指南. 中華病理學雜志, 2011, 40(8): 553-557.
|
| 3. |
胃癌 HER2 檢測指南(2016 版)專家組. 胃癌 HER2 檢測指南(2016 版). 中華病理學雜志. 2016, 45(8): 528-532.
|
| 4. |
梁盼, 趙曦曈, 趙慧萍, 等. CT 對胃癌診斷和臨床應用價值. 中華放射學雜志, 2020, 54(11): 1141-1144.
|
| 5. |
Lubner MG, Smith AD, Sandrasegaran K, et al. CT texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503.
|
| 6. |
Szczypinski PM, Strzelecki M, Materka A. MaZda—a software for texture analysis. 2007 International Symposium on Information Technology Convergence. 2007: 245-249.
|
| 7. |
Szczypiński PM, Strzelecki M, Materka A, et al. MaZda—a software package for image texture analysis. Comput Methods Programs Biomed, 2009, 94(1): 66-76.
|
| 8. |
Materka A SP. MaZda User’s Manual [MaZda 4.6. download link]. 1999. http://www.eletel.p.lodz.pl/programy/mazda/.
|
| 9. |
王永芹, 黃子星, 袁放, 等. CT 平掃圖像紋理分析對肝癌與肝血管瘤鑒別診斷的初步研究. 中國普外基礎與臨床雜志, 2017, 24(2): 254-258.
|
| 10. |
Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Magn Reson Imaging, 2004, 22(1): 81-91.
|
| 11. |
Yan L, Liu Z, Wang G, et al. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. Acad Radiol, 2015, 22(9): 1115-1121.
|
| 12. |
Yoon HH, Sukov WR, Shi Q, et al. HER-2/neu gene amplification in relation to expression of HER2 and HER3 proteins in patients with esophageal adenocarcinoma. Cancer, 2014, 120(3): 415-424.
|
| 13. |
Bang YJ, Van Cutsem E, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 2010, 376(9742): 687-697.
|
| 14. |
Tominaga N, Gotoda T, Hara M, et al. Five biopsy specimens from the proximal part of the tumor reliably determine HER2 protein expression status in gastric cancer. Gastric Cancer, 2016, 19(2): 553-560.
|
| 15. |
Gullo I, Grillo F, Molinaro L, et al. Minimum biopsy set for HER2 evaluation in gastric and gastro-esophageal junction cancer. Endosc Int Open, 2015, 3(2): E165-E170.
|
| 16. |
俞悅, 周愛萍, 曾益新. HER2 陽性胃癌的治療研究進展. 中國腫瘤臨床, 2017, 44(2): 59-63.
|
| 17. |
Materka A, Strzelecki M. Texture analysis methods - a review. COST B11 report, 1998. https://www.researchgate.net/publication/249723259_Texture_Analysis_Methods_-_A_Review.
|
| 18. |
陳瑾, 王海屹, 葉慧義. 紋理分析在腫瘤影像學中的研究進展. 中華放射學雜志, 2017, 51(12): 979-982.
|
| 19. |
Yi X, Guan X, Chen C, et al. Adrenal incidentaloma: machine learning-based quantitative texture analysis of unenhanced CT can effectively differentiate sPHEO from lipid-poor adrenal adenoma. J Cancer, 2018, 9(19): 3577-3582.
|
| 20. |
Ganeshan B, Goh V, Mandeville HC, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology, 2013, 266(1): 326-336.
|
| 21. |
Court LE, Fave X, Mackin D, et al. Computational resources for radiomics. Transl Cancer Res, 2016, 5(4): 340-348.
|