| 1. |
Veronesi U, Paganelli G, Viale G, et al. A randomized comparison of sentinel-node biopsy with routine axillary dissection in breast cancer. N Engl J Med, 2003, 349(6): 546-553.
|
| 2. |
Sun SX, Moseley TW, Kuerer HM, et al. Imaging-based approach to axillary lymph node staging and sentinel lymph node biopsy in patients with breast cancer. AJR Am J Roentgenol, 2020, 214(2): 249-258.
|
| 3. |
Hao Y, Ren G, Yang W, et al. Combination diagnosis with elastography strain ratio and molecular markers effectively improves the diagnosis rate of small breast cancer and lymph node metastasis. Quant Imaging Med Surg, 2020, 10(3): 678-691.
|
| 4. |
Allison KH, Hammond MEH, Dowsett M, et al. Estrogen and progesterone receptor testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Guideline Update. Arch Pathol Lab Med, 2020, 144(5): 545-563.
|
| 5. |
Wolff AC, Hammond MEH, Allison KH, et al. HER2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline focused update summary. J Oncol Pract, 2018, 14(7): 437-441.
|
| 6. |
Goldhirsch A, Winer EP, Coates AS, et al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann Oncol, 2013, 24(9): 2206-2223.
|
| 7. |
李健斌, 江澤飛. 2019 年 CSCO BC 指南更新要點解讀. 中國腫瘤外科雜志, 2019, 11(3): 155-160.
|
| 8. |
中華醫學會超聲醫學分會. 乳腺超聲檢查和診斷共識. 中華放射學雜志, 2014, 48(9): 718-722.
|
| 9. |
Kim EK, Noh WC, Han W, et al. Prognostic significance of young age (<35 years) by subtype based on ER, PR, and HER2 status in breast cancer: a nationwide registry-based study. World J Surg, 2011, 35(6): 1244-1253.
|
| 10. |
中國抗癌協會乳腺癌專業委員會. 中國抗癌協會乳腺癌診治指南與規范(2021年版). 中國癌癥雜志, 2021, 31(10): 954-1040.
|
| 11. |
Krag DN, Anderson SJ, Julian TB, et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol, 2010, 11(10): 927-933.
|
| 12. |
Liu D, Li X, Lan Y, et al. Models for predicting sentinel and non-sentinel lymph nodes based on pre-operative ultrasonic breast imaging to optimize axillary strategies. Ultrasound Med Biol, 2021, 47(11): 3101-3110.
|
| 13. |
Karahall? ?, Acar T, Atahan MK, et al. Clinical and pathological factors affecting the sentinel lymph node metastasis in patients with breast cancer. Indian J Surg, 2017, 79(5): 418-422.
|
| 14. |
林彩玲, 何毅輝, 林志武. 乳腺癌腋窩淋巴結轉移危險因素的臨床研究. 中華實驗外科雜志, 2020, 37(9): 1716-1719.
|
| 15. |
Fujii T, Yajima R, Hirakata T, et al. Impact of the prognostic value of vascular invasion, but not lymphatic invasion, of the primary tumor in patients with breast cancer. Anticancer Res, 2014, 34(3): 1255-1259.
|
| 16. |
劉卓, 李曉鳳, 張美云. Apaf-1和Ki-67在乳腺癌組織中的表達及臨床意義. 臨床腫瘤學雜志, 2017, 22(2): 133-136.
|
| 17. |
Yang F, Yu X, Bao Y, et al. Prognostic value of Ki-67 in solid pseudopapillary tumor of the pancreas: Huashan experience and systematic review of the literature. Surgery, 2016, 159(4): 1023-1031.
|
| 18. |
周戌, 肖敏, 李三榮, 等. 乳腺癌組織中E-cad、Ki-67的表達及其與臨床病理特征和腋窩淋巴結轉移的相關性. 現代腫瘤醫學, 2021, 29(13): 2287-2291.
|
| 19. |
Tan LG, Tan YY, Heng D, et al. Predictors of axillary lymph node metastases in women with early breast cancer in Singapore. Singapore Med J, 2005, 46(12): 693-697.
|
| 20. |
Viale G, Zurrida S, Maiorano E, et al. Predicting the status of axillary sentinel lymph nodes in 4 351 patients with invasive breast carcinoma treated in a single institution. Cancer, 2005, 103(3): 492-500.
|
| 21. |
Chen K, Liu J, Li S, et al. Development of nomograms to predict axillary lymph node status in breast cancer patients. BMC Cancer, 2017, 17(1): 561. doi: 10.1186/s12885-017-3535-7.
|
| 22. |
謝熠. 乳腺癌腋窩淋巴結轉移nomogram預測模型的建立. 南昌: 南昌大學, 2020.
|
| 23. |
龍丞, 羅銘, 曾健. 臨床腋窩淋巴結陰性乳腺癌前哨淋巴結轉移logistic回歸模型的建立和驗證. 廣東醫學, 2019, 40(24): 3388-3394.
|
| 24. |
Jiang T, Su W, Zhao Y, et al. Non-invasive prediction of lymph node status for patients with early-stage invasive breast cancer based on a morphological feature from ultrasound images. Quant Imaging Med Surg, 2021, 11(8): 3399-3407.
|
| 25. |
Dihge L, Ohlsson M, Edén P, et al. Artificial neural network models to predict nodal status in clinically node-negative breast cancer. BMC Cancer, 2019, 19(1): 610. doi: 10.1186/s12885-019-5827-6.
|
| 26. |
Bevilacqua JL, Kattan MW, Fey JV, et al. Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation. J Clin Oncol, 2007, 25(24): 3670-3679.
|
| 27. |
Chen W, Wang C, Fu F, et al. A model to predict the risk of lymph node metastasis in breast cancer based on clinicopathological characteristics. Cancer Manag Res, 2020, 12: 10439-10447.
|