| 1. |
俞婷, 謝珉寧, 陳興華, 等. 上海金山區痔病發作的流行病學特點研究. 湖南中醫雜志, 2021, 37(4): 123-126.
|
| 2. |
Ng KS, Holzgang M, Young C. Still a case of “No Pain, No Gain”? An updated and critical review of the pathogenesis, diagnosis, and management options for hemorrhoids in 2020. Ann Coloproctol, 2020, 36(3): 133-147.
|
| 3. |
Rubbini M, Ascanelli S. Classification and guidelines of hemorrhoidal disease: present and future. World J Gastrointest Surg, 2019, 11(3): 117-121.
|
| 4. |
Thomson WH. The nature of haemorrhoids. Br J Surg, 1975, 62(7): 542-552.
|
| 5. |
Gass OC, Adams J. Hemorrhoids: etiology and pathology. Am J Surg, 1950, 79(1): 40-43.
|
| 6. |
張翔, 白景舒. 痔發病機制診斷和治療概述. 中國肛腸病雜志, 2019, 39(9): 72-74.
|
| 7. |
Mondal S, Adhikari N, Banerjee S, et al. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: a minireview. Eur J Med Chem, 2020, 194: 112260. doi: 10.1016/j.ejmech.2020.112260.
|
| 8. |
秦蕾, 秦鑫. MMP-9、VEGFR2因子在內痔患者組織中的表達及意義. 中國細胞生物學學報, 2020, 42(10): 1800-1805.
|
| 9. |
戴浩. 十全育真湯加減對脫垂性內痔組織中MMP-7、MMP-9的影響. 呼和浩特: 內蒙古醫科大學, 2020.
|
| 10. |
Serra R, Gallelli L, Grande R, et al. Hemorrhoids and matrix metalloproteinases: a multicenter study on the predictive role of biomarkers. Surgery, 2016, 159(2): 487-494.
|
| 11. |
Yang H, Chen H, Liu F, et al. Up-regulation of matrix metalloproteinases-9 in the kidneys of diabetic rats and the association with neutrophil gelatinase-associated lipocalin. BMC Nephrol, 2021, 22(1): 211. doi: 10.1186/s12882-021-02396-w.
|
| 12. |
Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res, 2006, 69(3): 562-573.
|
| 13. |
Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int J Mol Sci, 2020, 21(24): 9739. doi: 10.3390/ijms21249739.
|
| 14. |
Li SL, Jing FY, Ma LL, et al. Myofibrotic malformation vessels: unique angiodysplasia toward the progression of hemorrhoidal disease. Drug Des Devel Ther, 2015, 9: 4649-4656.
|
| 15. |
馮大勇, 王春暉, 馮月寧, 等. 從細胞因子生物學角度探討痔的發病機制. 中國醫刊, 2016, 51(3): 28-30.
|
| 16. |
Wang H, Wang L, Xie Z, et al. Nitric oxide (NO) and NO synthases (NOS)-based targeted therapy for colon cancer. Cancers (Basel), 2020, 12(7): 1881. doi: 10.3390/cancers12071881.
|
| 17. |
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev, 1991, 43(2): 109-142.
|
| 18. |
韓煒, 王振軍, 趙博, 等. 痔組織彈性纖維退變和血管生成的機制及其意義. 中華胃腸外科雜志, 2005, 8(1): 56-59.
|
| 19. |
Lohsiriwat V, Wilson VG, Scholefield JH, et al. Regional distribution of nitric oxide synthase in human anorectal tissue: a pilot study on the potential role for nitric oxide in haemorrhoids. Curr Vasc Pharmacol, 2020, 18(1): 43-49.
|
| 20. |
Gokce AH, Gokce FS, Durmus S, et al. The effect of nitric oxide, endothelial nitric oxide synthetase, and asymmetric dimethylarginine in hemorrhoidal disease. Rev Assoc Med Bras (1992), 2020, 66(8): 1128-1133.
|
| 21. |
di Mola FF, Friess H, K?ninger J, et al. Haemorrhoids and transient receptor potential vanilloid 1. Gut, 2006, 55(11): 1665-1666.
|
| 22. |
Varela-López E, Del Valle-Mondragón L, Castrejón-Téllez V, et al. Role of the transient receptor potential vanilloid type 1 (TRPV1) in the regulation of nitric oxide release in Wistar rat aorta. Oxid Med Cell Longev, 2021, 2021: 8531975. doi: 10.1155/2021/8531975.
|
| 23. |
Correia de Sousa M, Gjorgjieva M, Dolicka D, et al. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci, 2019, 20(24): 6249. doi: 10.3390/ijms20246249.
|
| 24. |
Song C, Zhou H, Lu H, et al. Aberrant expression for microRNA is potential crucial factors of haemorrhoid. Hereditas, 2020, 157(1): 25. doi: 10.1186/s41065-020-00139-9.
|
| 25. |
Wang C, Lu H, Luo C, et al. miR-412-5p targets Xpo1 to regulate angiogenesis in hemorrhoid tissue. Gene, 2019, 705: 167-176.
|
| 26. |
Liu T, Zhou H, Lu H, et al. MiR-4729 regulates TIE1 mRNA m6A modification and angiogenesis in hemorrhoids by targeting METTL14. Ann Transl Med, 2021, 9(3): 232. doi: 10.21037/atm-20-3399.
|
| 27. |
Karaman S, Lepp?nen VM, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development, 2018, 145(14): dev151019. doi: 10.1242/dev.151019.
|
| 28. |
Okada-Ban M, Thiery JP, Jouanneau J. Fibroblast growth factor-2. Int J Biochem Cell Biol, 2000, 32(3): 263-267.
|
| 29. |
朱華鋒, 汪春蘭, 趙宇. VEGF和FGF-2在血管生成中的協同作用研究進展. 中華整形外科雜志, 2006, 22(1): 72-75.
|
| 30. |
梁文龍, 曹杰, 楊平, 等. 血管內皮生長因子受體2在痔黏膜中的分布特征及臨床意義. 實用醫學雜志, 2015, 31(17): 2830-2832.
|
| 31. |
王琪, 經芳艷, 鄧永鍵. 內痔粘膜及血管上皮細胞VEGF/FGF2的表達與內痔分期的相關性分析. 中國臨床解剖學雜志, 2019, 37(4): 409-413.
|
| 32. |
Porwal A, Kundu GC, Bhagwat G, et al. Polyherbal formulation Anoac-H suppresses the expression of RANTES and VEGF for the management of bleeding hemorrhoids and fistula. Mol Med Rep, 2021, 24(4): 736. doi: 10.3892/mmr.2021.12376.
|
| 33. |
劉史佳, 申龍樹, 戴國梁, 等. IL-17、IL-6、TNF-α細胞因子在痔瘡患者中的表達. 藥學與臨床研究, 2016, 24(3): 201-204.
|
| 34. |
朱志紅, 曹莫寒, 王志民, 等. 痔脫垂組織中TNF-α、IL-1β、IFN-γ表達和Treitz肌形態及密度變化的研究. 中國現代普通外科進展, 2021, 24(10): 791-795.
|
| 35. |
孫松朋, 龍俊紅, 張書信. 痔病患者顯微鏡下痔組織出血情況及其影響因素研究. 中國全科醫學, 2020, 23(33): 4190-4195.
|
| 36. |
石健宇, 王相龍. 內痔患者血凝情況改變的相關性研究. 中國肛腸病雜志, 2020, 40(12): 78.
|
| 37. |
Hashempur MH, Khademi F, Rahmanifard M, et al. An evidence-based study on medicinal plants for hemorrhoids in medieval Persia. J Evid Based Complementary Altern Med, 2017, 22(4): 969-981.
|