| 1. |
Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin, 2011, 61(2): 69-90.
|
| 2. |
Lin F, Xie YJ, Zhang XK, et al. GTSE1 is involved in breast cancer progression in p53 mutation-dependent manner. J Exp Clin Cancer Res, 2019, 38(1): 152. doi: 10.1186/s13046-019-1157-4.
|
| 3. |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2021, 71(3): 209-249.
|
| 4. |
Wu TF, Li YC, Ma SR, et al. Expression and associations of TRAF1, BMI-1, ALDH1, and Lin28B in oral squamous cell carcinoma. Tumour Biol, 2017, 39(4): 1010428317695930. doi: 10.1177/1010428317695930.
|
| 5. |
柴爍, 張強, 李玉云. ALDH1作為干細胞標志物在胃癌中的研究進展. 醫學理論與實踐, 2019, 32(6): 814-816.
|
| 6. |
Malinee M, Kumar A, Hidaka T, et al. Targeted suppression of metastasis regulatory transcription factor SOX2 in various cancer cell lines using a sequence-specific designer pyrrole-imidazole polyamide. Bioorg Med Chem, 2020, 28(3): 115248. doi: 10.1016/j.bmc.2019.115248.
|
| 7. |
Marchitti SA, Brocker C, Stagos D, et al. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol, 2008, 4(6): 697-720.
|
| 8. |
姚晉林, 姚孟飛, 竇坤, 等. SOX2和OCT4基因蛋白在乳腺癌中的表達及臨床意義的研究. 中國藥物與臨床, 2015, 15(5): 610-613.
|
| 9. |
Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl), 2022, 135(5): 584-590.
|
| 10. |
Graham D, DiNome ML, Ganz PA. Breast cancer risk-reducing medications. JAMA, 2020, 324(3): 310. doi: 10.1001/jama.2020.11784.
|
| 11. |
袁會軍, 劉斌, 于文慶, 等. Chk1在乳腺癌組織中的表達及臨床病理意義. 現代腫瘤醫學, 2022, 30(3): 456-459.
|
| 12. |
Bao C, Chen J, Chen D, et al. MiR-93 suppresses tumorigenesis and en-hances chemosensitivity of breast cancer via dual targeting E2F1 and CCND1. Cell Death Dis, 2020, 11(8): 618. doi: 10.1038/s41419-020-02855-6.
|
| 13. |
MacDonagh L, Santiago RM, Gray SG, et al. Exploitation of the vita-jmin A/retinoic acid axis depletes ALDH1-positive cancer stem cells jand re-sensitises resistant non-small cell lung cancer cells to cisplatin. Transl Oncol, 2021, 14(4): 101025. doi: 10.1016/.tranon.2021.101025.
|
| 14. |
Kiefer FW, Orasanu G, Nallamshetty S, et al. Retinaldehyde dehydrogenase 1 coordinates hepatic gluconeogenesis and lipid metabolism. Endocrinology, 2012, 153(7): 3089-3099.
|
| 15. |
Ca?estro C, Catchen JM, Rodríguez-Marí A, et al. Consequences of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and retinoic acid signaling in vertebrate genomes. PLoS Genet, 2009, 5(5): e1000496. doi: 10.1371/journal.pgen.1000496.
|
| 16. |
焦園園, 張金金, 李萬穎, 等. 乙醛脫氫酶1在宮頸癌發生發展中作用的研究進展. 吉林大學學報(醫學版), 2017, 43(1): 196-199.
|
| 17. |
Yao T, Chen Q, Zhang B, et al. The expression of ALDH1 in cervical carcinoma. Med Sci Monit, 2011, 17(8): HY21-HY26.
|
| 18. |
Wakamatsu Y, Sakamoto N, Oo HZ, et al. Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int, 2012, 62(2): 112-119.
|
| 19. |
劉翠翠, 張立行, 柳素玲. 腫瘤干細胞標志物ALDH1A1通過重塑免疫微環境促進乳腺癌進展. 中國細胞生物學學報, 2022, 44(3): 405-412.
|
| 20. |
徐晶晶, 邱岑, 鄭建明. 乳腺癌組織中ALDH1、BRCA1、nm23蛋白表達變化及意義. 山東醫藥, 2020, 60(28): 50-53.
|
| 21. |
Stevanovic M, Zuffardi O, Collignon J, et al. The cDNA sequence and chromosomal location of the human SOX2 gene. Mamm Genome, 1994, 5(10): 640-642.
|
| 22. |
Novak D, Hüser L, Elton JJ, et al. SOX2 in development and cancer biology. Semin Cancer Biol, 2020, 67(Pt 1): 74-82.
|
| 23. |
Weina K, Utikal J. SOX2 and cancer: current research and its implications in the clinic. Clin Transl Med, 2014, 3: 19. doi: 10.1186/2001-1326-3-19.
|
| 24. |
Hüser L, Novak D, Umansky V, et al. Targeting SOX2 in anticancer therapy. Expert Opin Ther Targets, 2018, 22(12): 983-991.
|
| 25. |
Wang J, Zeng H, Li H, et al. MicroRNA-101 inhibits growth, proliferation and migration and induces apoptosis of breast cancer cells by targeting sex-determining region Y-box 2. Cell Physiol Biochem, 2017, 43(2): 717-732.
|
| 26. |
Yang F, Zhang J, Yang H. OCT4, SOX2, and NANOG positive expression correlates with poor differentiation, advanced disease stages, and worse overall survival in HER2+ breast cancer patients. Onco Targets Ther, 2018, 11: 7873-7881.
|
| 27. |
Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 2007, 1(5): 555-567.
|
| 28. |
Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell, 2013, 12(1): 15-30.
|
| 29. |
Wang XY, Penalva LO, Yuan H, et al. Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer, 2010, 9: 221. doi: 10.1186/1476-4598-9-221.
|
| 30. |
Liu K, Xie F, Gao A, et al. SOX2 regulates multiple malignant processes of breast cancer development through the SOX2/miR-181a-5p, miR-30e-5p/TUSC3 axis. Mol Cancer, 2017, 16(1): 62. doi: 10.1186/s12943-017-0632-9.
|
| 31. |
Wu F, Ye X, Wang P, et al. Sox2 suppresses the invasiveness of breast cancer cells via a mechanism that is dependent on Twist1 and the status of Sox2 transcription activity. BMC Cancer, 2013, 13: 317. doi: 10.1186/1471-2407-13-317.
|
| 32. |
Wang Y, Zhou J, Wang Z, et al. Upregulation of SOX2 activated LncRNA PVT1 expression promotes breast cancer cell growth and invasion. Biochem Biophys Res Commun, 2017, 493(1): 429-436.
|