| 1. |
Derks MGM, van de Velde CJH. Neoadjuvant chemotherapy in breast cancer: more than just downsizing. Lancet Oncol, 2018, 19(1): 2-3.
|
| 2. |
趙洪猛, 曹旭晨. 乳腺癌腫瘤內異質性的驅動因素及臨床研究進展. 中國腫瘤臨床, 2022, 49(15): 797-800.
|
| 3. |
何洋, 趙偉鵬, 佟仲生. 新輔助化療對乳腺癌ER PR HER-2及Ki-67表達影響的研究進展. 中國腫瘤臨床, 2020, 7(22): 1185-1188.
|
| 4. |
田力文, 王翠艷. 磁共振在乳腺癌新輔助治療療效評估與預測中的應用進展. 山東醫藥, 2023, 63(13): 87-91.
|
| 5. |
許曉亮, 李新瑜, 李明霞. 乳腺腫塊型癌與非腫塊型癌的MRI、鉬靶及超聲差異分析. 實用癌癥雜志, 2022, 37(2): 319-322.
|
| 6. |
Mao N, Yin P, Wang Q, et al. Added value of radiomics on mammography for breast cancer diagnosis: a feasibility study. J Am Coll Radiol, 2019, 16(4 Pt A): 485-491.
|
| 7. |
McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature, 2020, 577(7788): 89-94.
|
| 8. |
Zhang N, Li XT, Ma L, et al. Application of deep learning to establish a diagnostic model of breast lesions using two-dimensional grayscale ultrasound imaging. Clin Imaging, 2021, 79: 56-63.
|
| 9. |
Murtaza G, Shuib L, Wahab AWA, et al. Deep learning-based breast cancer classification through medical imaging modalities: state of the art and research challenges. Artificial Intelligence Review, 2019, 53: 1655-1720.
|
| 10. |
彭衛軍, 顧雅佳, 龔敬. 人工智能在乳腺腫瘤影像中的應用現狀及展望. 中華放射學雜志, 2023, 57(2): 121-124.
|
| 11. |
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer, 2012, 48(4): 441-446.
|
| 12. |
Choi RY, Coyner AS, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning. Transl Vis Sci Technol, 2020, 9(2): 14. doi: 10.1167/tvst.9.2.14.
|
| 13. |
Basha SS, Dubey SR, Pulabaigari V, et al. Impact of fully connected layers on performance of convolutional neural networks for image classification. Neurocomputing, 2020, 378: 112-119.
|
| 14. |
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM, 2017, 60(6): 84-90.
|
| 15. |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. ICLR, 2015, arXiv: 1409.1556.
|
| 16. |
Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1-9.
|
| 17. |
李鳳玲, 衛亞妮, 步宏. 人工智能在新輔助治療后乳腺癌療效及預后預測中的研究現狀. 臨床與實驗病理學雜志, 2023, 39(7): 833-837.
|
| 18. |
Wang H, Mao X. Evaluation of the efficacy of neoadjuvant chemotherapy for breast cancer. Drug Des Devel Ther, 2020, 14: 2423-2433.
|
| 19. |
Byra M, Dobruch-Sobczak K, Klimonda Z, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer sonography using siamese convolutional neural networks. IEEE J Biomed Health Inform, 2021, 25(3): 797-805.
|
| 20. |
Liu Y, Wang Y, Wang Y, et al. Early prediction of treatment response to neoadjuvant chemotherapy based on longitudinal ultrasound images of HER2-positive breast cancer patients by Siamese multi-task network: A multicentre, retrospective cohort study. EClinicalMedicine, 2022, 52: 101562. doi: 10.1016/j.eclinm.2022.101562.
|
| 21. |
Jiang M, Li CL, Luo XM, et al. Ultrasound-based deep learning radiomics in the assessment of pathological complete response to neoadjuvant chemotherapy in locally advanced breast cancer. Eur J Cancer, 2021, 147: 95-105.
|
| 22. |
Mann RM, Cho N, Moy L. Breast MRI: state of the art. Radiology, 2019, 292(3): 520-536.
|
| 23. |
Rahmat K, Mumin NA, Hamid MTR, et al. MRI breast: current imaging trends, clinical applications, and future research directions. Curr Med Imaging, 2022, 18(13): 1347-1361.
|
| 24. |
Scheel JR, Kim E, Partridge SC, et al. MRI, clinical examination, and mammography for preoperative assessment of residual disease and pathologic complete response after neoadjuvant chemotherapy for breast cancer: ACRIN 6657 trial. AJR Am J Roentgenol, 2018, 210(6): 1376-1385.
|
| 25. |
Gu YL, Pan SM, Ren J, et al. Role of magnetic resonance imaging in detection of pathologic complete remission in breast cancer patients treated with neoadjuvant chemotherapy: A meta-analysis. Clin Breast Cancer, 2017, 17(4): 245-255.
|
| 26. |
Bóuzon A, Acea B, Soler R, et al. Diagnostic accuracy of MRI to evaluate tumour response and residual tumour size after neoadjuvant chemotherapy in breast cancer patients. Radiol Oncol, 2016, 50(1): 73-79.
|
| 27. |
Cain EH, Saha A, Harowicz MR, et al. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set. Breast Cancer Res Treat, 2019, 173(2): 455-463.
|
| 28. |
Sutton EJ, Onishi N, Fehr DA, et al. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy. Breast Cancer Res, 2020, 22(1): 57. doi: 10.1186/s13058-020-01291-w.
|
| 29. |
El Adoui M, Drisis S, Benjelloun M. Multi-input deep learning architecture for predicting breast tumor response to chemotherapy using quantitative MR images. Int J Comput Assist Radiol Surg, 2020, 15(9): 1491-1500.
|
| 30. |
Joo S, Ko ES, Kwon S, et al. Multimodal deep learning models for the prediction of pathologic response to neoadjuvant chemotherapy in breast cancer. Sci Rep, 2021, 11(1): 18800. doi: 10.1038/s41598-021-98408-8.
|
| 31. |
Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal, 2017, 42: 60-88.
|
| 32. |
Fujioka T, Mori M, Kubota K, et al. The utility of deep learning in breast ultrasonic imaging: a review. Diagnostics (Basel), 2020, 10(12): 1055. doi: 10.3390/diagnostics10121055.
|
| 33. |
Lambert B, Forbes F, Doyle S, et al. Trustworthy clinical AI solutions: A unified review of uncertainty quantification in deep learning models for medical image analysis. Artif Intell Med, 024, 150: 102830. doi: 10.1016/j.artmed.2024.102830.
|
| 34. |
Shen YT, Chen L, Yue WW, et al. Artificial intelligence in ultrasound. Eur J Radiol, 2021, 139: 109717. doi: 10.1016/j.ejrad.2021.109717.
|
| 35. |
Hussain L, Huang P, Nguyen T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response. Biomed Eng Online, 2021, 20(1): 63. doi: 10.1186/s12938-021-00899-z.
|
| 36. |
Khan N, Adam R, Huang P, et al. Deep learning prediction of pathologic complete response in breast cancer using MRI and other clinical data: a systematic review. Tomography, 2022, 8(6): 2784-2795.
|
| 37. |
Lo Gullo R, Eskreis-Winkler S, Morris EA, et al. Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy. Breast, 2020, 49: 115122.
|
| 38. |
張靖, 宋君, 徐衛云, 等. MRI檢查預測乳腺癌新輔助化療后病理完全緩解的準確性分析. 中國普外基礎與臨床雜志, 2020, 27(8): 975-979.
|
| 39. |
Dalmis MU, Gubern-Merida A, Vreemann S, et al. Artificial intelligence-based classification of breast lesions imaged with a multiparametric breast MRI protocol with ultrafast DCE-MRI, T2, and DWI. Invest Radiol, 2019, 54(6): 325-332.
|