| 1. |
黃理賓, 黃秋實, 楊烈. 全球及中國的結直腸癌流行病學特征及防治: 2022《全球癌癥統計報告》解讀. 中國普外基礎與臨床雜志, 2024, 31(5): 530-537.
|
| 2. |
Liu B, Hu Y, Rai SK, et al. Low-carbohydrate diet macronutrient quality and weight change. JAMA Netw Open, 2023, 6(12): e2349552. doi: 10.1001/jamanetworkopen.2023.49552.
|
| 3. |
Fuchs MA, Sato K, Niedzwiecki D, et al. Sugar-sweetened beverage intake and cancer recurrence and survival in CALGB 89803 (Alliance). PLoS One, 2014, 9(6): e99816. doi: 10.1371/journal.pone.0099816.
|
| 4. |
Grasgruber P, Hrazdira E, Sebera M, et al. Cancer incidence in Europe: an ecological analysis of nutritional and other environmental factors. Front Oncol, 2018, 8: 151. doi: 10.3389/fonc.2018.00151.
|
| 5. |
Goncalves MD, Lu C, Tutnauer J, et al. High-fructose corn syrup enhances intestinal tumor growth in mice. Science, 2019, 363(6433): 1345-1349.
|
| 6. |
Liu X, Xie C, Wang Y, et al. Ferritinophagy and ferroptosis in cerebral ischemia reperfusion injury. Neurochem Res, 2024, 49(8): 1965-1979.
|
| 7. |
Shi X, Zhang A, Lu J, et al. An overview of heavy chain ferritin in cancer. Front Biosci (Landmark Ed), 2023, 28(8): 182. doi: 10.31083/j.fbl2808182.
|
| 8. |
Li S, Huang P, Lai F, et al. Mechanisms of ferritinophagy and ferroptosis in diseases. Mol Neurobiol, 2024, 61(3): 1605-1626.
|
| 9. |
張小利. 高脂飲食促進結腸炎相關結腸癌發生發展的機制初探. 北京: 中國醫學科學院北京協和醫學院, 2020.
|
| 10. |
李國強, 李彥川, 馮任南, 等. 基于網絡的食物頻率問卷信度和效度研究. 哈爾濱醫科大學學報, 2014, 48(5): 376-380.
|
| 11. |
祁少俊, 唐延金, 張正鐸, 等. 補充多種微量元素對高糖飲食大鼠的保護作用. 山東大學學報(醫學版), 2023, 61(7): 19-26.
|
| 12. |
Singh LP, Yumnamcha T, Devi TS. Mitophagy, ferritinophagy and ferroptosis in retinal pigment epithelial cells under high glucose conditions: implications for diabetic retinopathy and age-related retinal diseases. JOJ Ophthalmol, 2021, 8(5): 77-85.
|
| 13. |
Kim J, Kim Y, La J, et al. Supplementation with a high-glucose drink stimulates anti-tumor immune responses to glioblastoma via gut microbiota modulation. Cell Rep, 2023, 42(10): 113220. doi: 10.1016/j.celrep.2023.113220.
|
| 14. |
Wang M, Liu J, Yan L, et al. Burden of liver cancer attributable to high fasting plasma glucose: a global analysis based on the global burden of disease study 2019. J Nutr Health Aging, 2024, 28(6): 100261. doi: 10.1016/j.jnha.2024.100261.
|
| 15. |
Miles FL, Neuhouser ML, Zhang ZF. Concentrated sugars and incidence of prostate cancer in a prospective cohort. Br J Nutr, 2018, 120(6): 703-710.
|
| 16. |
Dewdney B, Roberts A, Qiao L, et al. A sweet connection? Fructose’s role in hepatocellular carcinoma. Biomolecules, 2020, 10(4): 496. doi: 10.3390/biom10040496.
|
| 17. |
Bellelli R, Federico G, Matte’ A, et al. NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep, 2016, 14(3): 411-421.
|
| 18. |
Wang R, Liang Z, Xue X, et al. Microglial FoxO3a deficiency ameliorates ferroptosis-induced brain injury of intracerebral haemorrhage via regulating autophagy and heme oxygenase-1. J Cell Mol Med, 2024, 28(1): e18007. doi: 10.1111/jcmm.18007.
|
| 19. |
Liu YC, Gong YT, Sun QY, et al. Ferritinophagy induced ferroptosis in the management of cancer. Cell Oncol (Dordr), 2024, 47(1): 19-35.
|
| 20. |
儲昭銀, 蘇青. 碳水化合物與惡性腫瘤發生風險. 上海醫學, 2021, 44(4): 286-292.
|
| 21. |
Twarda-Clapa A, Olczak A, Bia?kowska AM, et al. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells, 2022, 11(8): 1312. doi: 10.3390/cells11081312.
|
| 22. |
Yamamoto T, Shiburo R, Moriyama Y, et al. Protein components of maple syrup as a potential resource for the development of novel anti-colorectal cancer drugs. Oncol Rep, 2023, 50(4): 179. doi: 10.3892/or.2023.8616.
|
| 23. |
Pan S, Hu B, Sun J, et al. Identification of cross-talk pathways and ferroptosis-related genes in periodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation. Front Immunol, 2022, 13: 1015491. doi: 10.3389/fimmu.2022.1015491.
|
| 24. |
Song X, Zheng Y, Liu Y, et al. Production of recombinant human hybrid ferritin with heavy chain and light chain in escherichia coli and its characterization. Curr Pharm Biotechnol, 2023, 24(2): 341-349.
|
| 25. |
He J, Li Z, Xia P, et al. Ferroptosis and ferritinophagy in diabetes complications. Mol Metab, 2022, 60: 101470. doi: 10.1016/j.molmet.2022.101470.
|
| 26. |
Bao L, Zhao C, Feng L, et al. Ferritinophagy is involved in Bisphenol A-induced ferroptosis of renal tubular epithelial cells through the activation of the AMPK-mTOR-ULK1 pathway. Food Chem Toxicol, 2022, 163: 112909. doi: 10.1016/j.fct.2022.112909.
|
| 27. |
姚陽. 高糖通過激活AMPK/mTOR/ULK1通路誘導成骨細胞鐵自噬進而促進鐵死亡在2型糖尿病骨質疏松中的機制研究. 中國醫科大學, 2022.
|
| 28. |
Qin X, Zhang J, Wang B, et al. Ferritinophagy is involved in the zinc oxide nanoparticles-induced ferroptosis of vascular endothelial cells. Autophagy, 2021, 17(12): 4266-4285.
|